Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = −2 B yCD =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = C yCD = 52 Câu Đạo hàm hàm số y = log √2 3x − là: A y′ = C y′ = B y′ = (3x − 1) ln 3x − ln 3x − ln D yCD = 36 D y′ = (3x − 1) ln √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 300 C 600 D 1200 R Câu R4 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C 2 Câu Cho hình phẳng (H) giới hạn đường y = x ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 8π 32 B V = C V = D V = A V = 5 3 Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a 15 a a B C D A a 15 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln − B ln + C ln − D − ln 2 2 2 Câu Cho số phức z = + 9i, phần thực số phức z A −77 B 36 C 85 D ax + b Câu 10 Cho hàm số y = có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (−2; 0) B (0; 2) C (0; −2) D (2; 0) Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (0; 2) C (1; 3) D (3; +∞) Câu 12 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Trang 1/5 Mã đề 001 Câu 13 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D Câu 14 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B πrl2 C πr2 l D πrl 3 2x + Câu 15 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 A y = − B y = C y = − D y = 3 3 Câu 16 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16 16π 16π A B C D 15 9 15 z2 Câu 17 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 13 C D 11 !2016 !2018 1+i 1−i Câu 18 Số phức z = + 1−i 1+i A B −2 C + i D Câu 19 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B P(−2; 3) C Q(−2; −3) D N(2; 3) Câu 20 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −3 D −7 Câu 21 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 10i C 11 + 2i (1 + i)(2 − i) Câu 22 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D |z| = Câu 23 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z2 + 2z + D z + z + C z · z + z + z + D −3 − 2i Câu 24 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z + z = 2bi C |z2 | = |z|2 D z · z = a2 − b2 − 2i (1 − i)(2 + i) Câu 25 Phần thực số phức z = + 2−i + 3i 29 29 11 11 A B − C D − 13 13 13 13 R2 Câu 26 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 27 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x)dx = 2x + + C B f (x) = 2x + + C R R √ C f (x)dx = 2x + + C D f (x)dx = √ + C 2x + Trang 2/5 Mã đề 001 Câu 28 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx − cosx + C B F(x) = sinx − cosx + C C F(x) = sinx + cosx + C D F(x) = −sinx + cosx + C R2 Câu 29 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = e2 C I = −e2 D I = e −−→ Câu 30 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (3; 1; 1) C (−1; −1; −3) D (3; 3; −1) Câu 31 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A 2025 B 2024 C −2024 D R3 Câu 32 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 B (0; ) C (−1; 0) D (1; 2) A ( ; 1) 2 R0 Câu 33 Giá trị −1 e x+1 dx A −e B e − C e D − e R2 −1 f ′ (x) Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √2 | √ √ √ thức P = |z1 | + |z B P = 26 C P = + D P = A P = 34 + Câu 35 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 15 C 10 D Câu 36 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C D A 2 Câu 38 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A √ B C D 2 Câu 40 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| D P = 2016 A P = B P = −2016 C max T = Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 z Câu 42 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 Trang 3/5 Mã đề 001 Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 23 B 29 C r Câu 44 Tìm tập xác định D hàm số y = log2 25 D 27 3x + x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−1; 4) C D = (−∞; 0) D D = (1; +∞) √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − A y′ = √ x2 − ln B y′ = x 2(x2 − 1) ln C y′ = x (x2 − 1) ln D y′ = x (x2 − 1)log4 e −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 47 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 15 πa2 17 A B C D 4 Câu 48 Biết π R2 sin 2xdx = ea Khi giá trị a là: A ln B C D − ln 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C Không tồn m D m = Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001