Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tập nghiệm của bất phương trình log1 2 (x − 1) ≥ 0 là A (−∞; 2] B [2;+∞)[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B [2; +∞) C (1; 2) D (1; 2] Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B −2 < m < C < m < D m = √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A π B C D π Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A C D = B = = = V2 V2 V2 V2 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 3 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B < m < C Không tồn m D m < 3 Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = + 2t y = + 3t y = −1 + t y = −1 + 3t B C D A z = −1 + t z = −1 + 3t z = + 3t z = −1 + t Câu 10 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (2; +∞) C (1; +∞) D (−∞; 1) Câu 11 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B lna C ln D ln(6a2 ) 2 x2 − 16 x − 16 Câu 12 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 184 B 186 C 193 D 92 Trang 1/5 Mã đề 001 Câu 13 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 14 B 28 C 11 + D 18 + R Câu 14 Cho dx = F(x) + C Khẳng định đúng? x 1 C F ′ (x) = D F ′ (x) = − A F ′ (x) = lnx B F ′ (x) = x x x Câu 15 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 Câu 16 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (−1; 2; 3) C (1; 2; −3) D (−1; −2; −3) Câu 17 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D 21008 Câu 18 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D Câu 19 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z − z = 2a C z · z = a2 − b2 D |z2 | = |z|2 A z + z = 2bi 1 25 = + Câu 20 Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B −17 C −31 D 17 Câu 21 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = 2k D A = Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực phần ảo 2i Câu 23 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 − 10i C −3 + 2i − 2i (1 − i)(2 + i) Câu 24 Phần thực số phức z = + 2−i + 3i 29 29 11 A − B C − 13 13 13 Câu 25 Với số phức z, ta có |z + 1| C |z|2 + 2|z| + A z2 + 2z + B z · z + z + z + D 11 + 2i D 11 13 D z + z + R2 Câu 26 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A 2024 B −2024 C 2025 D R Câu 27 Tìm nguyên hàm I = xcosxdx x A I = xsinx + cosx + C B I = x2 cos + C x C I = x2 sin + C D I = xsinx − cosx + C Câu 28 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(−1; −4; 4) C C(1; 0; 2) D C(1; 4; 4) Trang 2/5 Mã đề 001 −−→ Câu 29 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (−1; −1; −3) C (3; 1; 1) D (3; 3; −1) Câu 30 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A −2 B C D R + lnx dx(x > 0) Câu 31 Nguyên hàm x 1 A x + ln2 x + C B ln2 x + lnx + C C x + ln2 x + C D ln2 x + lnx + C 2 Câu 32 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = e x + B F(x) = (e x + 5) C F(x) = − e x + C D F(x) = − (2 − e x ) 2 2 Câu 33 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B x + y + z − = C z − = D y − = √ Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm M Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = A P = C P = D P = 2 √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C D √ 2 √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A ≤ |z| ≤ B |z| > C |z| < D < |z| < 2 2 z+1 số ảo Tìm |z| ? Câu 40 Cho số phức z , thỏa mãn z−1 A |z| = B |z| = C |z| = D |z| = Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| A B C z số thực Giá trị lớn + z2 √ √ D 2 Câu 43 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 15 πa2 17 πa2 17 B C D A 4 Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 15 a3 A B C D 16 Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 25 B 23 C 29 D 27 Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B C r Câu 47 Tìm tập xác định D hàm số y = log2 12 D 3x + x−1 A D = (−∞; 0) B D = (−1; 4) C D = (−∞; −1] ∪ (1; +∞) D D = (1; +∞) Câu 48 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2a+b+c C P = 26abc D P = 2abc Câu 49 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 50 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = 2loga e C P = + 2(ln a)2 D P = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001