1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (593)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,15 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết ∫ f (u)du = F(u) +C Mệnh đề nào dưới đây đúng? A ∫ f (2x − 1)dx = 2[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu R1 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R D f (2x − 1)dx = 2F(2x − 1) + C C f (2x − 1)dx = F(2x − 1) + C Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ √ tiếp √ π 3.a π 2.a2 2π 2.a2 A B C π 3.a D 3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln + C − ln − D − ln A ln − 2 2 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A 3(m2 ) B (m2 ) C (m2 ) D (m ) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m ≥ C m ≥ D m > a Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 1350 B 600 C 450 D 300 R Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (2; 4; 6) C (−1; −2; −3) D (1; 2; 3) Câu 10 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = −sinx + + C B f (x) = −sinx + x2 + C R R x2 C f (x) = sinx + + C D f (x) = sinx + x2 + C Câu 11 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 B C D A Trang 1/5 Mã đề 001 Câu 12 Nếu A R2 R2 f (x) = [ f (x) − 2] B C −2 D Câu 13 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −3 B C D −2 R dx = F(x) + C Khẳng định đúng? x B F ′ (x) = C F ′ (x) = lnx D F ′ (x) = A F ′ (x) = − x x x ′ Câu 15 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f (x) = 4x +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D Câu 16 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường trịn có tọa độ A (2; 0) B (0; 2) C (0; −2) D (−2; 0) Câu 14 Cho Câu 17 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 B |z| = 34 C |z| = A |z| = 34 Câu 18 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z2 + 2z + C z + z + √ 34 D |z| = D z · z + z + z + 4(−3 + i) (3 − i)2 Câu 19 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = 48 B |w| = C |w| = 85 D |w| = Câu 20 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 21 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 22 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B C −10 D −9 Câu 23 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B −22016 C −21008 + D 21008 Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −3 D −7 Câu 25 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 − i B z = + i C z = − i D z = −3 + i Câu 26 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 2 A F(x) = (e x + 5) B F(x) = − (2 − e x ) C F(x) = − e x + C D F(x) = e x + 2 2 R2 Câu 27 Tính tích phân I = xe x dx A I = −e2 B I = e C I = 3e2 − 2e D I = e2 Trang 2/5 Mã đề 001 Câu 28 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C −2 D Câu R29 Mệnh đề R sau sai? A R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R B R ( f (x) + g(x)) = R f (x) + R g(x), với hàm số f (x); g(x) liên tục R C R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Câu 30 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B −2x + y − z + = C 2x + y − z − = D −2x + y − z + = R3 Câu 31 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 C (0; ) D (1; 2) A (−1; 0) B ( ; 1) 2 Câu 32 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z + 15 = B x + 2y + 2z + 15 = C x + 2y + 2z − 15 = D x − 2y + 2z − 15 = Câu 33 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − 12 = B 3x + 2y + z − = C 3x − 2y + z + = D 3x − 2y + z − = Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z2 | √ √ √ B P = 34 + C P = D P = 26 A P = + Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 37 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 2z − i Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≥ C |A| < D |A| ≤ √  √  √ 42 √ Câu 40 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c C a2 + b2 + c2 − ab − bc − ca D Trang 3/5 Mã đề 001 Câu 42 Cho số phức z , thỏa mãn A |z| = z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = D |z| = Câu 43 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = D m = m = −10 Câu 44 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 a3 15 B C D A 16 Câu 47 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + m 2mn + n + C log2 2250 = n A log2 2250 = 3mn + n + n 2mn + n + D log2 2250 = n B log2 2250 = Câu 48 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D Câu 49 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −x4 + 2x2 + C y = −2x4 + 4x2 D y = x3 − 3x2 Câu 50 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:39

w