Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A −3 sin 3x +C B 3 sin 3x +C C 1 3 sin 3x +C[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính nguyên hàm A −3 sin 3x + C R cos 3xdx B sin 3x + C C sin 3x + C √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? A π B C 1 D − sin 3x + C D √ π Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B π C D Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = 52 D yCD = Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A −z x y Câu Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(1; 2; 0) C A(0; 2; 3) D A(0; 0; 3) Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều cao tứ diện √ √ √ tiếp 2 √ 2.a π 2.a 2π π 3.a B π 3.a2 D C A 3 Câu Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 10 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 x2 A f (x) = −sinx + + C B f (x) = sinx + + C 2 R R C f (x) = −sinx + x2 + C D f (x) = sinx + x2 + C 2x + Câu 11 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 1 A y = − B y = C y = − D y = 3 3 R2 R2 Câu 12 Nếu f (x) = [ f (x) − 2] A B C −2 D Câu 13 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ−1 C y′ = πxπ D y′ = xπ−1 π Câu 14 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Trang 1/5 Mã đề 001 Câu 15 Tập nghiệm bất phương trình x+1 < A (−∞; 1) B [1; +∞) C (−∞; 1] D (1; +∞) Câu 16 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16π 16 B C D A 15 15 9 Câu 17 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + C z + z + !2016 !2018 1−i 1+i + Câu 18 Số phức z = 1−i 1+i A B + i C D z2 + 2z + D −2 Câu 19 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực phần ảo 2i C Phần thực −3 phần ảo là−2 D Phần thực là3 phần ảo Câu 20 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = D P = 2i Câu 21 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = C A = 2ki D A = 2k Câu 22 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 i Câu 23 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ √ − 2i A |w| = 48 B |w| = C |w| = D |w| = 85 Câu 25 Cho số phức z thỏa mãn (2 + i)z + A B 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + 1+i C 13 D Câu 26 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) + C B F ′ (x) = f (x) C F(x) = f ′ (x) D F ′ (x) + C = f (x) R2 Câu 27 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 29 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Câu 30 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − = B 3x + 2y + z − = C 3x − 2y + z + = D 3x − 2y + z − 12 = R3 Câu 31 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (1; 2) B (−1; 0) C (0; ) D ( ; 1) 2 Trang 2/5 Mã đề 001 R0 e x+1 dx B − e R Câu 33 Tìm nguyên hàm I = xcosxdx Câu 32 Giá trị A e −1 A I = xsinx − cosx + C x C I = x2 cos + C C −e D e − x B I = x2 sin + C D I = xsinx + cosx + C Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = (|z| − 4)2 D P = |z|2 − Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = 13 B T = 13 C T = D T = 3 √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a + b + c C D a2 + b2 + c2 + ab + bc + ca Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 26 D P = 34 + A P = Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ D B C A √ 2 Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 z Câu 40 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| bằng? thức 1√+ |z|2 1 A B C D Câu 41 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B 15 C D √ Câu 43 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ (4; +∞) Trang 3/5 Mã đề 001 x2 Câu 44 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 A B 32 C 64 D cos x π F(− ) = π Khi giá trị sin x + cos x Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π ln + 5 B 6π 128 C ln + 6π D 3π ln + Câu 46 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ a 15 B √ 3a 30 A 10 √ 3a C √ 3a D √ 2x − x2 + Câu 47 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 48 Hàm số hàm số sau đồng biến R A y = 4x + x+2 B y = −x3 − x2 − 5x C y = x4 + 3x2 D y = x3 + 3x2 + 6x − Câu 49 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − A y′ = 2(x2 x − 1) ln B y′ = (x2 x − 1) ln C y′ = (x2 x − 1)log4 e D y′ = √ x2 − ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001