Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC A1B1C1 có AB = a, AC = 2a, AA1 = 2a √ 5 và B̂[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a a a 15 A a 15 B C D 3 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a C A B a D Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(1; 1; 2) C I(0; 1; 2) D I(0; 1; −2) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(1; 2; 0) C A(1; 0; 3) D A(0; 2; 3) ; y = 0; x = 0; x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln − B ln + C − ln D ln − 2 2 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; ) B ( ; +∞) C (0; 1) D (1; +∞) 4 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại √ tiếp tam giác BCD có chiều cao chiều cao √ tứ diện √ √ π 2.a2 2π 2.a2 π 3.a2 A B π 3.a C D 3 Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = x4 + C y = −x4 + 2x2 + D y = −x4 + Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = −1 + 3t y = + 2t y = + 3t y = −1 + t D A B C z = −1 + 3t z = −1 + t z = + 3t z = −1 + t Câu 10 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; 2) C (2; +∞) D (1; +∞) Câu 11 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 12 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Trang 1/5 Mã đề 001 Câu 13 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = − B y′ = C y′ = xln3 xln3 x ax + b có đồ thị đường cong hình bên Câu 14 Cho hàm số y = cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; −2) B (2; 0) C (−2; 0) D y′ = x D (0; 2) Câu 15 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (7; −6) C (−6; 7) D (6; 7) Câu 16 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (0; 1) D (1; 0) Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực −3 phần ảo là−2 C Phần thực phần ảo 2i D Phần thực là3 phần ảo Câu 18 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C 21008 D Câu 19 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i A B C 29 D 13 Câu 20 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 2i C −3 − 10i D 11 + 2i − 2i (1 − i)(2 + i) + Câu 21 Phần thực số phức z = 2−i + 3i 29 29 11 11 A − B C D − 13 13 13 13 !2016 !2018 1+i 1−i Câu 22 Số phức z = + 1−i 1+i A B −2 C D + i 2(1 + 2i) Câu 23 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 24 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −10 C −9 D 10 Câu 25 Tính mô-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 B |z| = 34 C |z| = A |z| = 34 R2 Câu 26 Tích phân I = (2x − 1) có giá trị bằng: A B C √ 34 D |z| = D Câu 27 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2) + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu R28 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R R B R k f (x) = k f (x) với số k với hàm số f (x) liên tục R C R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R D ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R Trang 2/5 Mã đề 001 Câu 29 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x)dx = 2x + + C B f (x)dx = √ + C 2x + R R √ 1√ C f (x) = 2x + + C D f (x)dx = 2x + + C Câu 30 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x B F(x) = e x + C F(x) = e2x D F(x) = e x+1 R1 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy Câu 31 Biết b b x + 6x + tính ab A ab = B ab = 12 C ab = D ab = −5 R + lnx Câu 32 Nguyên hàm dx(x > 0) x 1 A x + ln2 x + C B ln2 x + lnx + C C ln2 x + lnx + C D x + ln2 x + C 2 R0 Câu 33 Giá trị −1 e x+1 dx A e − B −e C e D − e Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | 2z − i Mệnh đề sau đúng? Câu 35 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| ≥ B |A| > C |A| < D |A| ≤ √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 + z + z2 Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 5 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 38 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 Câu 40 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i C |z| = D |z| = A |z| = B |z| = √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c 2 C a + b + c − ab − bc − ca D Câu 42 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = −2016 C P = 2016 D P = Trang 3/5 Mã đề 001 Câu 43 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 12π C 8π D 6π Câu 44 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + 2πR2 C S = πRl + πR2 D S = πRh + πR2 Câu 45 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = D P = 2loga e Câu 46 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 3a3 Câu 47 Biết a, b ∈ Z cho A R C 4a3 (x + 1)e2x dx = ( B D 12a3 ax + b 2x )e + C Khi giá trị a + b là: C D Câu 48 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − B R3 C R3 D R3 R2 (x2 − 2x)dx + R2 (x2 − 2x)dx |x − 2x|dx = |x − 2x|dx − R3 R3 |x2 − 2x|dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080255 đồng B 36080253 đồng D 36080251 đồng Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001