Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 < m < C −2 ≤ m ≤ D m = a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 1350 C 600 D 300 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = R5 dx = ln T Giá trị T là: Câu Biết 2x − √ D T = A T = 81 B T = C T = Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể tích√của khối nón √ π.a3 4π 2.a3 2π.a3 π 2.a3 A B C D 3 3 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C D a Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = 3 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 10 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 11 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; 2; −3) C (−1; 2; 3) D (1; −2; 3) Trang 1/5 Mã đề 001 Câu 12 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −3 B C D −2 Câu 13 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 Câu 14 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 15 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B C 12 D 11 Câu 16 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16π 16 A B C D 15 15 Câu 17 Những số sau vừa số thực vừa số ảo? A Khơng có số B C.Truehỉ có số C Chỉ có số Câu 18 Phần thực số phức z = A − 11 13 B 29 13 − 2i (1 − i)(2 + i) + 2−i + 3i 29 C − 13 D D 11 13 Câu 19 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = 2i D P = 2(1 + 2i) Câu 20 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 21.√Cho số phức z1 = + √ 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ A 10 B 10 C 30 D 130 Câu 22 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = −21009 C (1 + i)2018 = 21009 i Câu 23 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm D (1 + i)2018 = 21009 B Mô-đun số phức z số thực D Mô-đun số phức z số phức Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 − 10i C −3 + 2i D 11 + 2i Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 26 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B 2x + y − z − = C −2x + y − z − = D −2x + y − z + = Trang 2/5 Mã đề 001 Câu 27 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) B f (x) = 2023cos(2023x) cos(2023x) C f (x) = −2023cos(2023x) D f (x) = − 2023 Câu 28 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A 6x + y − z − = B x + y − z − = C x − y + z + = D x + y − z + = Câu 29 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e x + C F(x) = e2x Câu 30 Tìm nguyên hàm hàm số f (x) = √ 1√ f (x)dx = 2x + + C R √ C f (x) = 2x + + C A R D F(x) = e x 2x + R √ B f (x)dx = 2x + + C R + C D f (x)dx = √ 2x + Câu 31 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? b Rb A a f (2x + 3) = F(2x + 3) a Ra B b f (x) = F(b) − F(a) C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hoành tính theo cơng thức S = F(b) − F(a) Rb D a k · f (x) = k[F(b) − F(a)] Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − 12 = B 3x − 2y + z − = C 3x − 2y + z + = D 3x + 2y + z − = −−→ Câu 33 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 3; −1) C (3; 1; 1) D (1; 1; 3) Câu 34 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B Phần thực z số âm C z số ảo D |z| = z+1 Câu 35 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = 1 D |z| = Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ Câu 37 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B 2 C a + b + c − ab − bc − ca D a + b + c √ Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Trang 3/5 Mã đề 001 Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≥ B |A| > 2z − i Mệnh đề sau đúng? + iz C |A| ≤ D |A| < Câu 40 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = −1 D A = Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 42 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 43 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2abc C P = 2a+b+c D P = 26abc Câu 44 Hàm số hàm số sau đồng biến R 4x + A y = B y = −x3 − x2 − 5x x+2 C y = x4 + 3x2 D y = x3 + 3x2 + 6x − Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = −1 + 2t x = − 2t x = + 2t y = −2 + 3t y = + 3t y = −2 + 3t y = −2 − 3t A B C D z = − 5t z = −4 − 5t z = + 5t z = − 5t Câu 46 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + B log2 2250 = A log2 2250 = n n 3mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = m n Câu 47 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a a 15 3a 3a 30 A B C D 2 10 d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C 2a D a Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 12π C 10π D 8π Câu 50 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 15 πa2 17 πa2 17 πa2 17 A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001