Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) x2 + y2 + z2 − 4z −[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = 29 C R = D R = Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m ≥ e−2 C m > D m > 2e Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 28 (m) B S = 24 (m) C S = 12 (m) D S = 20 (m) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (−2; −1; 2) Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C 4πR3 D πR3 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m ≥ D m < Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 100a3 C 30a3 D 60a3 Câu Hàm số sau khơng có cực trị? A y = x2 C y = x3 − 6x2 + 12x − B y = cos x D y = x4 + 3x2 + √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận B Có tiệm cận ngang tiệm cận đứng C Có tiệm cận ngang khơng có tiệm cận đứng D Khơng có tiệm cận ngang có tiệm cận đứng R5 dx Câu 10 Biết = ln T Giá trị T là: 2x − √ A T = B T = 81 C T = D T = Câu 11 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = = = D = B C V2 V2 V2 V2 Câu 12 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C D − 6 Trang 1/5 Mã đề 001 Câu 13 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = D yCD = 52 Câu 14 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều√cao tứ diện √ √ π 2.a2 π 3.a2 2π 2.a2 B A π 3.a C D 3 Câu 15 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A Câu 16 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh 2a Tính thể tích khối nón √ √ huyền 2π.a3 4π 2.a3 π.a3 π 2.a A B C D 3 3 Câu 17 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 3b2 − a2 3a b A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3ab C VS ABC = D VS ABC = 12 12 Câu 18 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; −1; 2) D (−2; 1; 2) Câu 19 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 4πR3 C πR3 D 6πR3 √ Câu 20 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành 10π π B V = C V = D V = π A V = 3 ax + b Câu 21 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ad > B ac < C bc > D ab < Câu 22 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu 23 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu R24 Công thức sai? R A R a x = a x ln a + C B R cos x = sin x + C C sin x = − cos x + C D e x = e x + C , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B C 3π D √ 3 Câu 25 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Trang 2/5 Mã đề 001 Câu 26 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 11 B 8,9 C 2,075 D 33,2 Câu 27 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−∞; −4) ∪ (−1; +∞) B S = (−4; −1) C S = [−1; +∞) D S = (−1; +∞) Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ C 2π D 4π A 8π B 3π Câu 29 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc MN mặt phẳng √ (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 A B C D 5 Câu 30 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 46.538667 đồng C 48.621.980 đồng D 43.091.358 đồng √ Câu 31 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vng cân B, AC = 2a Thể tích √ khối chóp S ABC √ √ √ a3 a3 2a3 B C D a3 A Câu 32 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 13 3a 13 3a 10 A B C D 13 26 20 Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ A (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 B (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x − 1)2 + (y + 1)2 + (z + 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 34 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −10 C m = D m = m = −16 x2 Câu 35 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 64 32 128 r 3x + Câu 36 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−∞; 0) C D = (1; +∞) D D = (−1; 4) ———————————————– Câu 37 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A 6π B C D 5 Trang 3/5 Mã đề 001 Câu 38 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = −1 + 2t x = − 2t x = + 2t x = + 2t y = + 3t y = −2 + 3t y = −2 + 3t y = −2 − 3t A B C D z = −4 − 5t z = + 5t z = − 5t z = − 5t R ax + b 2x )e + C Khi giá trị a + b là: Câu 39 Biết a, b ∈ Z cho (x + 1)e2x dx = ( A B C D Câu 40 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + C R3 |x − 2x|dx = − D R3 R2 (x − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − (x2 − 2x)dx |x2 − 2x|dx x2 + mx + Câu 41 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = −1 C Không có m D m = Câu 42 Trong khơng gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = π R2 Câu 43 Biết sin 2xdx = ea Khi giá trị a là: A B C ln D − ln Câu 44 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = D P = 2loga e √ Câu 45 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình với x ∈ (4; +∞) C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình vơ nghiệm r 3x + Câu 46 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (−∞; 0) C D = (−∞; −1] ∪ (1; +∞) D D = (1; +∞) −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (1; 14; 15) A u + v = (2; 14; 14) B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 48 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = D m = m = −10 Trang 4/5 Mã đề 001 Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080253 đồng C 36080255 đồng D 36080254 đồng - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001