1. Trang chủ
  2. » Đề thi

BỘ ĐỀ LUYỆN THI ĐH MÔN TOÁN

7 7 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 540 KB

Nội dung

1) Trong mặt phẳng Oxy, cho tam giác ABC có đường cao AH, trung tuyến CM và phân giác trong BD. Viết phương trình đường thẳng d đi qua điểm A và cắt đường thẳng  sao cho[r]

(1)

TRƯỜNG THPT HẬU LỘC 2

www.MATHVN.com ĐỀ THI THỬ ĐẠI HỌC LẦN NĂM HỌC 2012-2013Môn thi: TOÁN, Khối A, B D Thời gian làm bài: 180 phút, không kể thời gian giao đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm)

Cho hàm số

y x  3x 1 (1)

Khảo sát biến thiên vẽ đồ thị (C) hàm số (1)

Lập phương trình tiếp tuyến với (C) biết song song với đường thẳng (d): 9x - y + = Câu II (2,0 điểm)

1) Giải phương trình:

2

cos 2cos sin

4 0

2cos

x x x

x

 

   

      

    

2) Giải phương trình 1 1 x2  1 x3 1 x3 2 1 x2

       

 

 

Câu III (1,0 điểm) Tính tích phân

1

2

0

( )

1

x x

x e dx

x

Câu IV (1,0 điểm) Cho hình lăng trụ đứng ABC A B C ' ' ' có đáy ABC tam giác cân C, cạnh đáy AB 2a góc ABC 300 Tính thể tích khối lăng trụ ABC A B C ' ' ' biết khoảng cách hai đường thẳng AB CB'

2

a

Câu V (1,0 điểm) Cho a, b, c ba số dương thoả mãn : a + b + c =

4 Tìm giá trị nhỏ biểu thức : 3 3 3

3

1

1

a c c b b a P

     

PHẦN RIÊNG (3,0 điểm) Thí sinh làm hai phần (Phần A B) A Theo chương trình chuẩn

Câu VI.a (2,0 điểm)

1) Trong mặt phẳng Oxy, cho tam giác ABC có đường cao AH, trung tuyến CM phân giác BD Biết ( 4;1), (17;12)

5

HM BD có phương trình x y  0 Tìm tọa độ đỉnh A tam giác ABC

2) Trong không gian Oxyz, cho đường thẳng : 1

2

xy z

  

 hai điểm A(1; 2; 1),

(3; 1; 5)

B   Viết phương trình đường thẳng d qua điểm A cắt đường thẳng  cho

khoảng cách từ B đến đường thẳng d lớn nhất, nhỏ Câu VII.a (1,0 điểm) Tìm số nguyên dương n biết:

  

            

2 2

2 2

2Cn 3.2.2Cn ( 1) (kk k 1)2k Ckn (2n n 1)2 n Cnn 40200

B Theo chương trình nâng cao Câu VI.b (2,0 điểm)

1) Trong mặt phẳng Oxy, cho đường tròn (C): 2

(x 2) (y3) 4 đường thẳng d: 3x 4y m  0 Tìm m để d có điểm M mà từ kẻ hai tiếp tuyến MA, MB tới (C) (A, B tiếp điểm) cho góc AMB bẳng 1200.

2) Trong không gian Oxyz cho điểm A(1;1; 1), (1;1;2), ( 1;2; 2) B C   mặt phẳng (P) có phương trình x 2y2z  1 0 Mặt phẳng ( ) qua A, vng góc với mặt phẳng (P), cắt đường thẳng BC I cho IB2IC Viết phương trình mặt phẳng ( )

Câu VII.b (1,0 điểm) Giải hệ phương trình :

2

1

1

2log ( 2) log ( 1)

log ( 5) log ( 4) =

x y

x y

xy x y x x

y x

 

 

        

 

  

 

(2)

………Hết……… ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM

Câu Ý Nội dung Điểm

I

1

1 (1,0 điểm) Khảo sát y x3 3x2 m2 m 1

     1,00

Khi m = 1, ta có y x3 3x2 1

  

+ TXĐ: D

+ Giới hạn:xlim (   x3 3x2 1)  xlim (  x3 3x21) +Sự biến thiên: ' 3 6

 

y x x

' 0

 

     

 

x

y x x

x

0,25

Hàm số đồng biến khoảng  ;0 ; 2;   Hàm số nghịch biến khoảng 0; 2

Hàm số đạt cực đại x = 0, yCĐ = Hàm số đạt cực tiểu x = 2, yCT = -3

0,25

Bảng biến thiên

x    y + 0 0 +

y

   -

0,25

Đồ thị: đồ thị hàm số cắt trục tung điểm (0;1) Điểm uốn I(1; 1) tâm đối xứng

0,25

2 (1,0 điểm) Xác định m để 1,00

Ta có : y’ = 3x2 - 6x

Vì tiếp tuyến cần tìm song song với (d) nên có hệ số góc k = 0,25 Do hồnh độ tiếp điểm nghiệm PT: 3x2 - 6x =

3

x x

 

  

 0,25

(3)

y = 9x + ( loại song song với (d))

 Với x = 3, ta có y(3) = Khi tiếp tuyến có PT : y = 9x - 26

Vậy tiếp tuyến cần tìm : y = 9x - 26 0,25

II

Giải phương trình:

2

cos 2cos sin

4

0 2cos

x x x

x

 

   

      

    

1,00

ĐK: 2cos 2

4 x   x  k

Với điều kiện phương trình cos 22 2cos sin

4

xx   x 

        

   

cos 22 21 sin sin 2 

2

x   x  x

         

 

 

0,25

sin 2x sin2 4x sin 2x 2

  

         

 

 

1 sin 2x cos 4x sin 2x 02

     

0,25

 1 sin 2x2  1 2sin 2x sin 2x 0 

 sin 2x sin 2x 02   

sin 2x

  sin 2x2 (loại)

0,25

sin 2x x k

4

     

So điều kiện phương trình có nghiệm x k2 (k )

     0,25

2

 Giải phương trình 1 1 x2  1x3  1 x3  2 1 x2

 

  1,00

ĐK:   1 x Đặt u 1x , v 1 x, u v, 0 Hệ trở thành:

 

2

3

1

u v

uv u v uv

  

 

   

 

0,25

Ta có: 1 12 2  1 2 2  1 2

2 2

uv uv u v uv u v

       

      

3 2 2

uvu v u vuvu v uv

0,25

Suy :

2 2

2

2

2

2 2

2

1

u

u v

u v

v

  

  

 

 

 

 

  

 

0,25

Thay vào ta có nghiệm PT : 2

x 

0,25 III

Tính tích phân

1 4

2

0

( )

1

x x

x e dx

x

 

(4)

Đặt I =

1 4

2

0

( )

1

x x

x e dx

x

 Ta có I =

1 4

2

0 01

x x

x e dx dx

x

  0,25

Ta tính

1

0 x

I x e dx Đặt t = x3 ta có

1

1

1

0

1 1

3 3

t t

I  e dtee 0,25

Ta tính

1 4

01

x

I dx

x

 Đặt t = x x t4 dx 4t dt3

    0,25

Khi

1

2

2 2

0

1

4 ( ) 4( )

1

t

I dx t dt

t t

      

 

 

Vậy I = I1+ I2 3e

  

0,25

IV

Tính thể tích khối lăng trụ ABC A B C ' ' ' 1,00 Gọi M, N trung điểm AB A'B' Tam giác CAB cân C

suy AB  CM Mặt khác AB 

CC' AB(CMNC') A B' ' ( CMNC'). Kẻ

( ) ( ') ' ' ( ' ')

MHCN H CN MH  CMNCMHA BMHCA B

0,25 mp(CA B' ')chứa CB' song song với AB nên

( , ') ( ,( ' ')) ( ,( ' '))

2

a

d AB CBd AB CA Bd M CA BMH  0,25

Tam giác vuông tan 300

3

a

BMCCMBM

Tam giác vuông

2 2 2

1 1

CMN MN a

MH MC MN a a MN

       

0,25

Từ

3 ' ' '

1

.2

2 3

ABC A B C ABC

a a

VS MNa a

N

M

A'

B'

C A

B C'

H 0,25

V Tìm giá trị nhỏ biểu thức 1,00 áp dụng Bất đẳng thức Cơsi cho ba số dương ta có

z y x

9 z

1 y x xyz

3 xyz z y x ) z y x (

3

       

   

 

  

 (*)

áp dụng (*) ta có

3

3

3

a c c b b a

9 a

3 c

1 c

3 b

1 b

3 a

1 P

           

(5)

áp dụng Bất đẳng thức Côsi cho ba số dương ta có

   

   

   

3

3

3

a 3b 1

a 3b 1.1 a 3b

3

b 3c 1

b 3c 1.1 b 3c

3

c 3a 1

c 3a 1.1 c 3a

3

  

    

  

    

  

    

0,25

Suy 3a 3b 3b 3c 3c 3a 134 a b c 6     4.3 3

 

    

 

Do P3

0,25

Dấu = xảy

3

a b c a b c

4 4

a 3b b 3c c 3a 

   

     

       

Vậy P đạt giá trị nhỏ abc1/4

0,25

VI.a

Tìm tọa độ đỉnh A tam giác ABC 1,00 Đt  qua H  BD có pt x y  5 0  BD I  I(0;5). 0,25 Giả sử  AB H ' Tam giác BHH' có BI phân giác đường

cao nên BHH' cân  I trung điểm HH' H'(4;9). 0,25 AB qua H’ có vtcp ' 3;3

5

u H M   

 

 

nên có pt 5x y  29 0 0,25 Tọa độ B nghiệm hệ 29 (6; 1)

5

x y

B x y

 

 

 

 M trung điểm AB

4 ;25

A 

  

 

0,25

2

Viết phương trình đường thẳng d qua điểm A cắt đường thẳng  cho

khoảng cách từ B đến đường thẳng d lớn nhất, nhỏ

1,00 Gọi d đt qua A cắt  M  M( ;3 ; 1  t t   t)

( 2 ;3 2; ), (2; 3; 4) AM    t t t AB  

 

 

 

 

 

 

 

 

 

 

 

 

 

  0,25

Gọi H hình chiếu B d Khi d B d( , )BHBA Vậy d B d( , ) lớn BA  HA Điều xảy  AMABAM AB 0

  2( 2 ) 3(3t t 2) 4t t

        

(3;6; 3) M

  Pt d

1

xyz

 

0,25

Đường thẳng ∆ qua điểm N(-1; 0; -1) có VTCP u2;3; 1  Ta có; NA2; 2;0  vNA u,    2;2; 2

 

                           

Mặt phẳng (P) chứa d  qua A có VTPT v nên có pt là: -x + y + z = 0;

Gọi K hình chiếu B (P)  BHBK Vậy d B d( , ) nhỏ BK  HK Lúc d đường thẳng qua A K

0,25

Tìm K = (0; 2; -2) Suy d có PT : 2

x u y

z u

  

 

0,25 VII.a Tìm số nguyên dơng n biÕt:

2 2

2 2

2Cn  3.2.2Cn  ( 1) (  kk k 1)2kCkn  (2 n n1)2 nCnn 40200

1,00

(6)

1 n n n k k n k 2 n 1 n n n x C x C ) ( x C x C C ) x (                 (1)

* Lấy đạo hàm hai vế (1) ta có:

n n n k k n k n 1 n n x C ) n ( x kC ) ( x C C ) x )( n (                  (2)

Lại lấy đạo hàm hai vế (2) ta có:

1 n n n 2 k k n k n 2 n n x C ) n ( n x C ) k ( k ) ( x C C ) x )( n ( n

2                0,25   

Thay x = vào đẳng thức ta có:

2 k k k 2n 2n

2n 2n 2n 2n

2n(2n 1) 2C  3.2.2C  ( 1) k(k 1)2  C  2n(2n 1)2  C 

           0,25

Phơng trình cho  2n(2n1)402002n2n 201000 n100 0,25 VI.b

1

Tìm m để d có điểm M mà từ kẻ hai tiếp tuyến MA, MB tới (C) (A, B tiếp điểm) cho góc AMB bẳng 1200

1,00 Đường trịn (C) có tâm I(2;-3) bán kính R=2 Theo giả thiết ta có tam giác

IAM vuông A AMI 600 MIA 300

  

Suy ra: IM =

os30

AI

c

0,25

M d nên M=(1 + 4t; -1 +

m

+3t)

Ta có  

2

2

2 4 1 3 2 25 4 4

4 16

m m m

IMt  t    t   t m

   

0,25

Suy ra:

2

2 16

25 4

2 16

m m

t   t m 

 

 

2

2

25 *

2 16

m m

t  t m

       

 

Ta có :

2

2

3 448

4 100 88

2 16 3

m m

m m m

 

 

           

   

0,25

Để có điểm M thỏa mãn đề PT(*) có nghiệm

2 448 251

4 88 11

3

m m m

       0,25

2  Mặt phẳng ( ) qua A, vng góc với mặt phẳng (P), cắt đường

thẳng BC I cho IB2IC Hãy viết phương trình mặt phẳng ( )

1,00

Gọi mặt phẳng ( ) có phương trình axby cz d  0với a b c; ; không

- mp( ) qua A(1;1; 1) nên ta có : a b c d   0 (1) - mp( ) mp P x( ) :  2y2z 1 nên VTPT vng góc

2 (2)

a b c

   

0,25

- IB2ICkhoảng cách từ B tới mp( ) lần khoảng cách từ C tới ( )

2 2 2

2 2 3

2 (3)

5

a b c d a b c d a b c d

a b c d

a b c a b c

                          0,25

(7)

TH1 :

1

0 2

2

3

2

b a

a b c d

a b c c a

a b c d

d a

 

 

   

 

    

 

      

  

chọn

2 1; 2;

a  b c d 

Ta có phương trình mp ( ) 2x y  2z 0

TH :

3

0 2

2

5 3

2

b a

a b c d

a b c c a

a b c d

d a

  

   

 

    

 

      

  

chọn a 2 b3;c2;d 3

Ta có phương trình mp ( ) 2x3y2z 0

Vậy tìm mp ( ) t/m ycbt 2x y  2z 0

2x3y2z 0

0,25

VII.b

+ Điều kiện:

2

2 0, 0, 0,

( )

0 1,

xy x y x x y x

I

x y

           

     

1,00

1 2

1 2

2log [(1 )( 2)] 2log (1 ) log ( 2) log (1 ) (1) ( )

log ( 5) log ( 4) = log ( 5) log ( 4) = 1(2)

x y x y

x y x y

x y x y x

I

y x y x

   

   

         

 

 

  

     

 

 

0,25 Đặt log2y(1 x)t (1) trở thành:

2

2 ( 1)

t t t

t

        0,25

Với t1 ta có: 1 x  y yx1 (3) Thế vào (2) ta có: 0,25

1 1

4

log ( 4) log ( 4) = log 1

4

x x x

x x

x x x x x

x x

  

   

           

Ngày đăng: 21/04/2021, 01:42

w