1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (505)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,01 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1),[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(3; 7; 4) C C(5; 9; 5) D C(1; 5; 3) √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D log Câu √ Cho a > a , Giá trị a A B √ a bằng? C D Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = D f (−1) = −1 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền √ √ 2a Tính thể tích3 khối nón π.a 4π 2.a3 2π.a3 π 2.a3 B C D A 3 3 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = D yCD = 52 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m2 ) C 3(m2 ) D (m ) Câu Tập nghiệm bất phương trình x+1 < A [1; +∞) B (−∞; 1] C (1; +∞) D (−∞; 1) x−2 y−1 z−1 = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 11 Cho hình chóp S ABC có đáy tam giác vuông B, S A vuông góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 45◦ C 30◦ D 60◦ Câu 10 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : Câu 12 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà:        x = + 2t x = + 2t x=5+t        x = + 2t      y = −1 + 3t y = + 3t y = −1 + t y = + 2t A  B C D             z = −1 + 3t  z = + 3t  z = −1 + t  z = −1 + t Trang 1/5 Mã đề 001 Câu 13 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 ′ Câu 14 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 B C D A Câu 15 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (3; +∞) C (2; 3) D (−∞; 3) Câu 16 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 18 + B 11 + C 28 D 14 Câu 17 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B -1 C Câu 18 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 − i B z = −3 + i C z = − i D D z = + i Câu 19 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ √ 34 34 C |z| = 34 D |z| = A |z| = 34 B |z| = 3 (1 + i)(2 + i) (1 − i)(2 − i) Câu 20 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z = C z số ảo D z = z z Câu 21 √ = 6z − 25i √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi mơ-đun số phức w A 29 B 13 C D Câu 22 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 23 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z · z = a2 − b2 C |z2 | = |z|2 D z + z = 2bi Câu 24 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 i B (1 + i)2018 = −21009 C (1 + i)2018 = 21009 D (1 + i)2018 = −21009 i Câu 25 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B C −9 D 10 Câu 26 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = 10 B I = C I = D I = Câu R27 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R B R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Trang 2/5 Mã đề 001 Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x − 2) + y2 + z2 = D (x + 2)2 + y2 + z2 = R1 R R1 R1 Câu 29 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −8 B 12 C D −3 Câu 30 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Câu 31 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C −2 D R8 R4 R4 Câu 32 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = −5 B [ f (x) + g(x)] = 10 R8 R4 C f (x) = D [4 f (x) − 2g(x)] = −2 Câu 33 Nguyên hàm A ln2 x + lnx + C R + lnx dx(x > 0) x B ln2 x + lnx + C C x + ln2 x + C D x + ln2 x + C Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? D A B C 2 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ D 2 A B C 2z − i Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≤ B |A| ≥ C |A| > D |A| < Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 2 C < |z| < D + z + z2 số thực − z + z2 < |z| < 2 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S Câu 40 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A D điểm P z số thực Tính giá trị biểu + z2 thức B √ C D Trang 3/5 Mã đề 001 √ 2 Mệnh đề Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 42 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 22016 C 21008 D −22016 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 43 Trong khơng gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B − ln C ln D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = √ 2x − x2 + có số đường tiệm cận đứng là: Câu 46 Đồ thị hàm số y = x2 − A B C D Câu 47 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 25 23 27 A B C D 4 4 Câu 48 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: C D Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 3mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = 2(x − 1) ln (x − 1) ln (x − 1)log4 e D y′ = √ x2 − ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:36

w