Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đường cong trong hình bên là đồ thị của hàm số nào? A y = x4 + 2x2 + 1 B[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = −x4 + C y = x4 + D y = −x4 + 2x2 + R Câu R2 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại có chiều cao chiều cao tứ diện √ tiếp tam giác BCD √ √ √ 2π 2.a2 π 3.a2 π 2.a2 B C π 3.a D A 3 x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vuông góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x − y + 2z = D (P) : x + y + 2z = √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Có tiệm cận ngang khơng có tiệm cận đứng D Khơng có tiệm cận a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 300 B 600 C 1350 D 450 R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C sin 3x + C D −3 sin 3x + C 3 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D ′ Câu Cho hàm số y = f (x) có đạo hàm f (x) = (x − 2) (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (1; 2) C (2; +∞) D (−∞; 1) x−2 y−1 z−1 Câu 10 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 11 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 225 C 105 D 210 Câu 12 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −2 B C D −3 Trang 1/5 Mã đề 001 Câu 13 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 45◦ D 30◦ Câu 14 Phần ảo số phức z = − 3i A −2 B −3 C D Câu 15 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (0; 1) D (1; 0) Câu 16 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 C D A B Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 18 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −22016 C −21008 + D −21008 (1 + i)2017 có phần thực phần ảo đơn vị? Câu 19 Số phức z = 21008 i A B C 21008 D Câu 20 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki Câu 21 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −10 C −9 D 10 Câu 22 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = 2i D P = Câu 23 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 2i C −3 − 10i D 11 + 2i 2017 + 2i + i Câu 24 Số phức z = có tổng phần thực phần ảo 2−i A B -1 C D − 2i (1 − i)(2 + i) Câu 25 Phần thực số phức z = + 2−i + 3i 29 29 11 11 A − B C D − 13 13 13 13 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(−1; −4; 4) C C(1; 0; 2) D C(1; 4; 4) Câu 27 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F ′ (x) + C = f (x) C F(x) = f ′ (x) D F(x) = f ′ (x) + C Câu 28 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) x + C B x2 x + C C (x − 1) x + C D x2 + x+1 x+1 + C −−→ Câu 29 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (3; 3; −1) C (−1; −1; −3) D (3; 1; 1) Trang 2/5 Mã đề 001 Câu 30 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = Câu 31 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x + B F(x) = e2x C F(x) = e x+1 D F(x) = e x Câu 32 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B 2x + y − z − = C −2x + y − z + = D −2x + y − z + = Câu 33 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x)dx = 2x + + C B f (x) = 2x + + C R R √ C f (x)dx = √ + C D f (x)dx = 2x + + C 2x + Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = 13 B T = C T = 13 D T = 3 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B z số thực không dương C |z| = D Phần thực z số âm Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ √ √ thức P = |z1 | + |z2 | √ B P = + C P = 26 D P = A P = 34 + √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C D √ 2 z Câu 40 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 − ab − bc − ca C a2 + b2 + c2 + ab + bc + ca D Câu 42 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Trang 3/5 Mã đề 001 Câu 43 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 44 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m < −2 C m > m < −1 D m > m < − Câu 45 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 46 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 12a3 C 3a3 D 4a3 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = 14 C R = 15 D R = Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 25 B 27 C 23 D 29 Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 a 15 3a 3a A B C D 10 2 Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 3mn + n + n B log2 2250 = 2mn + 2n + m C log2 2250 = 2mn + n + n D log2 2250 = 2mn + n + n Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001