Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục c[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B 3π C 4π D π R Câu Tính nguyên hàm cos 3xdx 1 A sin 3x + C B sin 3x + C C −3 sin 3x + C D − sin 3x + C 3 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2] C (1; 2) D (−∞; 2] Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + (ln b)2 B ln(ab) = ln a ln b a ln a C ln(ab2 ) = ln a + ln b D ln( ) = b ln b Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 B (m ) C (m ) D (m ) A 3(m ) Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−3; 1) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (1; +∞) Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C ( ; +∞) D ( ; 2] [22; +∞) A [ ; 2] [22; +∞) 4 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 A V = B V = C V = D V = 5 R Câu Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = B F ′ (x) = C F ′ (x) = − D F ′ (x) = lnx x x x Câu 10 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = −sinx + + C B f (x) = sinx + x2 + C R R x2 + C C f (x) = −sinx + x2 + C D f (x) = sinx + Câu 11 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D ′ Câu 12 Cho hàm số y = f (x) có đạo hàm f (x) = (x − 2) (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; +∞) C (1; 2) D (2; +∞) Trang 1/5 Mã đề 001 Câu 13 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 B C −2 D −3 A 2x + Câu 14 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 1 B y = − C y = D y = A y = − 3 3 Câu 15 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 60◦ C 30◦ D 45◦ R2 R2 Câu 16 Nếu f (x) = [ f (x) − 2] A B C −2 D Câu 17 Với số phức z, ta có |z + 1|2 A z2 + 2z + B |z|2 + 2|z| + C z · z + z + z + D z + z + Câu 18 √ thức |z1 + z1 z2 | √ √ Cho số phức z1 = +√2i, z2 = − i Giá trị biểu B 130 C 10 D 10 A 30 Câu 19 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực −3 phần ảo là−2 C Phần thực phần ảo 2i D Phần thực là3 phần ảo !2016 !2018 1+i 1−i Câu 20 Số phức z = + 1−i 1+i A B −2 C D + i (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 21 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A |z| = B z = C z = z D z số ảo z Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm B Mô-đun số phức z số phức C Mô-đun số phức z số thực D Mô-đun số phức z số thực dương 4(−3 + i) (3 − i)2 Câu 23 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ √ − 2i A |w| = 48 B |w| = C |w| = D |w| = 85 Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −21008 D −22016 Câu 26 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x) = 2x + + C B f (x)dx = √ + C 2x + R R √ 1√ C f (x)dx = 2x + + C D f (x)dx = 2x + + C Câu 27 Tìm hàm số F(x) khơng nguyên hàm hàm số f (x) = sin2x A F(x) = −cos2 x B F(x) = −cos2x C F(x) = sin2 x D F(x) = − cos2x Trang 2/5 Mã đề 001 Câu 28 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = 10 C I = D I = R2 Câu 29 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = e C I = −e2 D I = e2 Câu 30 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x − 2)2 + y2 + z2 = −−→ Câu 31 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 3; −1) C (3; 1; 1) D (1; 1; 3) Câu 32 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A P(3; 1; 3) B M(−2; 1; −8) C Q(1; 2; −5) D N(4; 2; 1) Câu 33 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z − = C −2x + y − z + = D 2x + y − z − = Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| > B |z| < C < |z| < D ≤ |z| ≤ 2 2 2 Câu 36 Gọi z1 ; z2 hai nghiệm phương trình z − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −22016 B 21008 C 22016 D −21008 √ 2 Mệnh đề Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm M Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z2 | √ √ √ A P = + B P = 34 + C P = 26 D P = z+1 Câu 40 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Trang 3/5 Mã đề 001 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 44 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 2 Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m < C m > −2 D −4 ≤ m ≤ −1 d Câu 46 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a √ 2x − x2 + có số đường tiệm cận đứng là: Câu 47 Đồ thị hàm số y = x2 − A B C D Câu 48 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = 2loga e D P = Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 50 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 15 πa2 17 πa2 17 A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001