1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (823)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,31 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 300 B 450 C 600 D 1200 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln + C ln − D − ln − A − ln 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + ln b a ln a C ln( ) = D ln(ab2 ) = ln a + (ln b)2 b ln b x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x − y + 2z = C (P) : x + y + 2z = D (P) : x − 2y − = R Câu Tính nguyên hàm cos 3xdx 1 A sin 3x + C B −3 sin 3x + C C sin 3x + C D − sin 3x + C 3 Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B 2π C 3π D π Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C D − 6 Câu Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; −2; 3) C (−1; 2; 3) D (1; 2; −3) R4 R4 R4 Câu 10 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B −1 C D Câu 11 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (−2; 0) B (0; −2) C (2; 0) D (0; 2) Câu 12 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Trang 1/5 Mã đề 001   x = + 2t    y = −1 + t A     z = −1 + 3t   x=5+t    y = + 2t B     z = + 3t   x = + 2t    y = −1 + 3t C     z = −1 + t   x = + 2t    y = + 3t D     z = −1 + t Câu 13 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 B C D A Câu 14 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 15 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (2; 3) B (6; 7) C (3; 4) D (4; 5) Câu 16 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 A a B a C 2a D a 3 2(1 + 2i) Câu 17 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D Câu 18 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 1 25 = + Câu 19 Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B −17 C −31 D 31 z2 Câu 20 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 11 C D 13 Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = + i C z = −3 − i D z = − i − 2i (1 − i)(2 + i) Câu 22 Phần thực số phức z = + 2−i + 3i 29 11 11 29 A B C − D − 13 13 13 13 Câu 23 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực là−3 phần ảo −2i C Phần thực là3 phần ảo D Phần thực −3 phần ảo là−2 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ − 2i √ √ A |w| = B |w| = 85 C |w| = D |w| = 48 Câu 25 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B P(−2; 3) C M(2; −3) D N(2; 3) Câu 26 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Trang 2/5 Mã đề 001 Câu 27 Tìm nguyên hàm I = x A I = x2 cos + C x C I = x sin + C R xcosxdx B I = xsinx − cosx + C D I = xsinx + cosx + C Câu 28 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) B F ′ (x) + C = f (x) C F ′ (x) = f (x) D F(x) = f ′ (x) + C R3 Câu 29 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 C (−1; 0) D (0; ) A (1; 2) B ( ; 1) 2 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(−1; −4; 4) C C(−1; 0; −2) D C(1; 4; 4) Câu 31 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx − cosx + C B F(x) = sinx + cosx + C C F(x) = sinx − cosx + C D F(x) = −sinx + cosx + C R4 R4 R3 Câu 32 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 33 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x) = 2x + + C B f (x)dx = 2x + + C R R √ + C D f (x)dx = 2x + + C C f (x)dx = √ 2x + Câu 34 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = 2016 B P = C max T = D P = −2016 Câu 35 Cho số phức z , thỏa mãn A |z| = B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 Câu 38 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A D z số thực Tính giá trị biểu + z2 thức √ B C D 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B C √ D 2 Trang 3/5 Mã đề 001 Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 41 Cho số phức z (không phải số thực, khơng phải số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 √ 2 Mệnh đề Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 43 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a > a x = ay ⇔ x = y Câu 44 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 45 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + B log2 2250 = A log2 2250 = m n 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 46 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 14 B R = C R = D R = 15 Câu 47 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 125π 250π 400π 500π A B C D 9 Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B m = C m = D Không tồn m Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương →         x = + 2t      x = − 2t  x = + 2t  x = −1 + 2t      y = −2 + 3t y = −2 − 3t y = + 3t y = −2 + 3t A  B C D             z = −4 − 5t  z = − 5t  z = + 5t  z = − 5t Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:29

w