1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (566)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 121,91 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a3 6 Tìm gó[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 600 B 1350 C 300 D 450 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a D A B C a 2 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 (m ) D (m ) A (m ) B 3(m ) C Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Có tiệm cận ngang tiệm cận đứng C Khơng có tiệm cận ngang có tiệm cận đứng D Khơng có tiệm cận Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + C y = x4 + 2x2 + D y = −x4 + 2x2 + √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 300 C 450 D 1200 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −1 C f (−1) = D f (−1) = −3 x−2 y−1 z−1 = = Gọi (P) Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : 2 −3 mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 R4 R4 R4 Câu 10 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A −1 B C D Câu 11 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 90◦ C 45◦ D 30◦ Câu 12 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln C lna D ln(6a2 ) Câu 13 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Trang 1/5 Mã đề 001 Câu 14 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 D A B C Câu 15 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = R C d > R D d = Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−1; −2; −3) C (2; 4; 6) D (−2; −4; −6) − 2i (1 − i)(2 + i) + 2−i + 3i 29 11 B − C − 13 13 Câu 17 Phần thực số phức z = A 11 13 D 29 13 4(−3 + i) (3 − i)2 Câu 18 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = 48 B |w| = 85 C |w| = D |w| = (1 + i)(2 − i) + 3i √ B |z| = C |z| = Câu 19 Mô-đun số phức z = A |z| = Câu 20 Cho số phức z thỏa mãn (2 + i)z + A B D |z| = √ 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + 1+i C D 13 Câu 21 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 130 B 30 C 10 D 10 Câu 22 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = + 7i C w = −7 − 7i D w = − 3i Câu 23 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B 11 + 2i C −3 − 10i D −3 − 2i Câu 24 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực dương B Mô-đun số phức z số phức D Mô-đun số phức z số thực Câu 25 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z + z = 2bi C z − z = 2a D |z2 | = |z|2 A z · z = a2 − b2 Câu 26 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x)dx = 2x + + C B f (x)dx = √ + C 2x + R R √ 1√ C f (x)dx = 2x + + C D f (x) = 2x + + C Câu 27 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A M(−2; 1; −8) B P(3; 1; 3) C N(4; 2; 1) D Q(1; 2; −5) Câu 28 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 1 2 A F(x) = (e x + 5) B F(x) = − e x + C C F(x) = − (2 − e x ) D F(x) = e x + 2 2 2 Trang 2/5 Mã đề 001 Câu 29 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hoành tính theo cơng thức S = F(b) − F(a) Rb B a k · f (x) = k[F(b) − F(a)] Ra C b f (x) = F(b) − F(a) b Rb D a f (2x + 3) = F(2x + 3) a Câu R30 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = R f (x) + R g(x), với hàm số f (x); g(x) liên tục R B R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R C R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R D k f (x) = k f (x) với số k với hàm số f (x) liên tục R Câu 31 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx − cosx + C B F(x) = −sinx − cosx + C C F(x) = sinx + cosx + C D F(x) = −sinx + cosx + C Câu 32 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x A F(x) = − cos2x B F(x) = sin2 x C F(x) = −cos2x R + lnx Câu 33 Nguyên hàm dx(x > 0) x A ln2 x + lnx + C B ln2 x + lnx + C C x + ln2 x + C Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 A A = + i B A = C A = D F(x) = −cos2 x D x + ln2 x + C = Tính A = z21 +z22 +z23 D A = −1 Câu 35 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 36 Gọi z1 ; z2 hai nghiệm phương trình z − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −22016 C 22016 D −21008 Câu 37 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = 2016 B max T = C P = D P = −2016 Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 √ điểm A hình vẽ bên điểm Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm M C điểm N D điểm Q √  √  √ 42 √ Câu 40 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B 10 C D Trang 3/5 Mã đề 001 √ Câu 42 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c D a2 + b2 + c2 − ab − bc − ca C Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 45 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Câu 49 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = m = −10 D m = Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + n 2mn + n + C log2 2250 = n A log2 2250 = 2mn + 2n + m 2mn + n + D log2 2250 = n B log2 2250 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:29

w