1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (772)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 120,2 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx −[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B < m < C m < D m < 3 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 B C D A 2m 2m m 2m Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(0; 0; 3) C A(1; 0; 3) D A(1; 2; 0) Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 (m2 ) D (m ) A (m2 ) B 3(m2 ) C √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang khơng có tiệm cận đứng √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 300 C 1200 D 450 Câu Đạo hàm hàm số y = log √2 3x − là: 2 6 A y′ = D y′ = B y′ = C y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(1; 1; 2) C I(0; 1; −2) D I(0; −1; 2) Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln C ln(6a2 ) D lna R Câu 10 Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = B F ′ (x) = − C F ′ (x) = D F ′ (x) = lnx x x x Câu 11 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; 6) C (7; −6) D (6; 7) Câu 12 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (0; 1) D (1; 0) Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; 2; 3) C (−1; −2; −3) D (1; −2; 3) 2x + đường thẳng có phương trình: Câu 14 Tiệm cận ngang đồ thị hàm số y = 3x − 1 A y = B y = − C y = D y = − 3 3 Câu 15 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 105 C 30 D 225 Câu 16 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 17 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 i Câu 18 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = −7 − 7i C w = −3 − 3i (1 + i)(2 − i) Câu 19 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D |z| = Câu 20 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Chỉ có số C Khơng có số D D w = + 7i 4(−3 + i) (3 − i)2 + Mô-đun số phức w = z − iz + Câu 21 Cho số phức z thỏa mãn z = −i √ √ √ − 2i √ B |w| = 48 C |w| = D |w| = A |w| = 85 Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm B Mô-đun số phức z số phức D Mô-đun số phức z số thực Câu 23 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ 34 A |z| = 34 B |z| = C |z| = 34 √ 34 D |z| = Câu 24 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B −21008 C −21008 + D 21008 Câu 25 Tìm số phức liên hợp số phức z = i(3i + 1) B z = + i C z = −3 + i A z = − i D z = −3 − i Câu 26 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx − cosx + C B F(x) = −sinx + cosx + C C F(x) = sinx − cosx + C D F(x) = sinx + cosx + C R0 Câu 27 Giá trị −1 e x+1 dx A e B e − C −e D − e Câu 28 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = 2023cos(2023x) B f (x) = cos(2023x) C f (x) = −2023cos(2023x) D f (x) = − cos(2023x) 2023 R2 Câu 29 Tính tích phân I = xe x dx A I = −e2 B I = e C I = e2 D I = 3e2 − 2e Trang 2/5 Mã đề 001 Câu 30 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = 10 B I = C I = D I = Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; −4; 4) B C(1; 0; 2) C C(−1; 0; −2) D C(1; 4; 4) Câu 32 Tìm nguyên hàm hàm số f (x) = √ 2x + R R 1√ A f (x)dx = √ + C B f (x)dx = 2x + + C 2x + R R √ √ D f (x) = 2x + + C C f (x)dx = 2x + + C Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x + y − z − = B 6x + y − z − = C x + y − z + = D x − y + z + = z Câu 34 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ √ M = |z + − i| B C D A 2 Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 B T = 13 C T = D T = 13 A T = 3 Câu 36 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = C P = D P = 2016 √ 2 Mệnh đề Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 38 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ C 13 D A B Câu 39 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = −1 C A = D A = Câu 40 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = 2016 C P = D max T = Câu 43 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 4a3 C 6a3 D 3a3 Trang 3/5 Mã đề 001 Câu 44 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( ax + b 2x )e + C Khi giá trị a + b là: B C D Câu 45 Chọn mệnh đề mệnh đề sau: A R3 B R3 R3 R3 R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx D 1 C R2 |x − 2x|dx = (x − 2x)dx − |x2 − 2x|dx = − R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 46 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+2b+3c C P = 2a+b+c D P = 2abc Câu 47 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 D y = −2x4 + 4x2 Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 49 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x3 + 3x2 + 6x − C y = x4 + 3x2 D y = 4x + x+2 Câu 50 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 3a3 C 6a3 D 9a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:28

w