Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1),[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(−3; 1; 1) C C(1; 5; 3) D C(3; 7; 4) a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 1350 B 600 C 450 D 300 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m , C m , D m = R Câu Tính nguyên hàm cos 3xdx 1 B sin 3x + C C sin 3x + C D −3 sin 3x + C A − sin 3x + C 3 Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 B D A = = C = = V2 V2 V2 V2 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 1200 B 300 C 600 D 450 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 18 + B 14 C 28 D 11 + Câu 10 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = πxπ−1 π Câu 11 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 60◦ C 45◦ D 90◦ Câu 12 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n4 = (1; 1; −1) C → n1 = (−1; 1; 1) D → n3 = (1; 1; 1) Trang 1/5 Mã đề 001 Câu 13 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16 16π B C D A 15 9 15 2 x − 16 x − 16 Câu 14 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 92 B 184 C 193 D 186 Câu 15 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (−∞; 1) C (3; +∞) D (0; 2) Câu 16 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (−6; 7) C (7; 6) D (6; 7) (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 17 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = z B z = C |z| = D z số ảo z Câu 18 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ √ 34 34 B |z| = 34 C |z| = D |z| = A |z| = 34 3 Câu 19 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B P(−2; 3) C N(2; 3) D M(2; −3) √ Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ −1 D ≤ m ≤ 25 1 Câu 21 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B 17 C −31 D −17 − 2i (1 − i)(2 + i) + Câu 22 Phần thực số phức z = 2−i + 3i 11 11 29 29 A − B C − D 13 13 13 13 Câu 23 biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = + 2i, √ z2 = − i Giá trị √ A 30 B 10 C 10 D 130 (1 + i)(2 − i) Câu 24 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = 4(−3 + i) (3 − i)2 Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = C |w| = 48 D |w| = 85 Câu 26 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z − 15 = B x + 2y + 2z − 15 = C x − 2y + 2z + 15 = D x + 2y + 2z + 15 = R4 R4 R3 Câu 27 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Câu 28 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = sinx − cosx + C B F(x) = −sinx − cosx + C C F(x) = −sinx + cosx + C D F(x) = sinx + cosx + C Trang 2/5 Mã đề 001 Câu 29 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x B F(x) = e2x C F(x) = e x+1 D F(x) = e x + 1 Câu 30 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ √ A f (x)dx = 2x + + C B f (x) = 2x + + C R R 1√ C f (x)dx = 2x + + C D f (x)dx = √ + C 2x + Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x + 2y + z − = B 3x − 2y + z − = C 3x − 2y + z + = D 3x − 2y + z − 12 = R8 R4 R4 Câu 32 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R4 A [4 f (x) − 2g(x)] = −2 B [ f (x) + g(x)] = 10 R8 R8 C f (x) = −5 D f (x) = Câu 33 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = 10 B I = C I = D I = Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 34 + D P = A P = 26 Câu 35 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 22016 C −22016 D 21008 √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a + b + c 2 C a + b + c − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca √ Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B C D 10 Câu 40 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = 2016 D P = −2016 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Trang 3/5 Mã đề 001 z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = Câu 42 Cho số phức z , thỏa mãn A |z| = D |z| = Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = + 2t x = −1 + 2t x = + 2t y = −2 + 3t y = −2 + 3t y = + 3t y = −2 − 3t A B C D z = + 5t z = − 5t z = −4 − 5t z = − 5t Câu 44 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 32 B 128 C x2 )=8 D 64 √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − A y′ = 2(x2 x − 1) ln B y′ = √ x2 − ln C y′ = (x2 x − 1) ln D y′ = (x2 x − 1)log4 e Câu 46 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 23 25 B C D A 4 4 Câu 47 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m > −2 C −4 ≤ m ≤ −1 D m < Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C D −2 Câu 49 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 50 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 3a3 C 6a3 D 9a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001