Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y = 0; x = 2 Tính thể[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 8π 32 B V = C V = D V = A V = 5 3 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x + x + mx − 1nằm bên phải trục tung 1 C Không tồn m D m < A m < B < m < 3 Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln( ) = B ln(ab2 ) = ln a + ln b b ln b C ln(ab2 ) = ln a + (ln b)2 D ln(ab) = ln a ln b log Câu Cho a > a , Giá √ trị a A B √ a bằng? C D Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: B (1; 2) C [2; +∞) D (−∞; 2] 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 A (1; 2] Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B − ln C ln − D − ln − 2 2 Câu Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Câu 10 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (2; 3) C (3; +∞) D (−∞; 3) Câu 11 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = C y′ = x x xln3 D y′ = − xln3 Trang 1/5 Mã đề 001 Câu 12 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (2; +∞) C (−∞; 1) D (1; +∞) Câu 13 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (7; −6) C (−6; 7) D (7; 6) Câu 14 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16 16π B C D A 15 9 15 Câu 15 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = −1 + t y = −1 + 3t y = + 2t y = + 3t A B C D z = −1 + 3t z = −1 + t z = + 3t z = −1 + t Câu 16 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 17 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B 11 + 2i C −3 − 10i D −3 + 2i (1 + i)(2 + i) (1 − i)(2 − i) Câu 18 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z D z số ảo B |z| = C z = z Câu 19 biểu thức |z1 + z1 z2 | √ Cho số phức z1 = +√2i, z2 = − i Giá trị √ √ A 10 B 130 C 30 D 10 Câu 20 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z + z = 2bi C |z2 | = |z|2 D z · z = a2 − b2 Câu 21 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 4(−3 + i) (3 − i) Câu 22 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = C |w| = 48 D |w| = 85 Câu 23 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = + i C z = −3 − i D z = − i Câu 24 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A −1 ≤ m ≤ B m ≥ m ≤ C m ≥ m ≤ −1 D ≤ m ≤ √ Câu 25 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B −9 C −10 D R0 Câu 26 Giá trị −1 e x+1 dx A −e B e C − e D e − Câu 27 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x D F(x) = −cos2 x A F(x) = −cos2x B F(x) = sin2 x C F(x) = − cos2x Trang 2/5 Mã đề 001 Câu R28 Mệnh đề R sau sai? A R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R B R ( f (x) + g(x)) = R f (x) + R g(x), với hàm số f (x); g(x) liên tục R C R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Câu 29 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? Rb A a k · f (x) = k[F(b) − F(a)] B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo công thức S = F(b) − F(a) Ra C b f (x) = F(b) − F(a) b Rb D a f (2x + 3) = F(2x + 3) a Câu 30 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A 2x + y − z − = B −2x + y − z + = C −2x + y − z − = D −2x + y − z + = Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − = B 3x − 2y + z − 12 = C 3x + 2y + z − = D 3x − 2y + z + = Câu 32 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A P(3; 1; 3) B N(4; 2; 1) C Q(1; 2; −5) D M(−2; 1; −8) R2 Câu 33 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A −2024 B 2025 C 2024 D + z + z2 số thực Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn − z + z2 Khi mệnh đề sau đúng? 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 √ Câu 35 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 + ab + bc + ca C a2 + b2 + c2 − ab − bc − ca D a + b + c Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ A P = + B P = C P = 26 D P = 34 + Câu 37 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Trang 3/5 Mã đề 001 z+1 số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = 2 √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Câu 39 Cho số phức z , thỏa mãn Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm P Câu 41 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B C 10 D 15 A 2z − i Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| ≤ C |A| ≥ D |A| > Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D π R2 Câu 44 Biết sin 2xdx = ea Khi giá trị a là: A ln B − ln C D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 46 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = D m = m = −16 Câu 47 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRh + πR2 C S = πRl + πR2 D S = πRl + 2πR2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ → − → − → − → C u + v = (2; 14; 14) D u + 3−v = (1; 14; 15) Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080251 đồng C 36080254 đồng D 36080253 đồng Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = + 2t x = −1 + 2t x = − 2t y = −2 − 3t y = + 3t y = −2 + 3t y = −2 + 3t C D A B z = − 5t z = −4 − 5t z = + 5t z = − 5t Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001