Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m > C m ≥ −1 D m ≥ Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m = C m , D m , Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 36 C yCD = 52 D yCD = −2 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(5; 9; 5) C C(3; 7; 4) D C(1; 5; 3) Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; −2) Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π B V = C V = D V = A V = 5 a3 Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 1350 B 600 C 300 D 450 Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (0; 1) C (−1; 2) D (1; 2) Câu 10 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 3 A a B a C 2a D a Câu 11 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 A a B a C a D 2a 3 Câu 12 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = xπ−1 C y′ = πxπ D y′ = πxπ−1 π Câu 13 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n1 = (−1; 1; 1) C → n4 = (1; 1; −1) D → n3 = (1; 1; 1) Trang 1/5 Mã đề 001 R dx = F(x) + C Khẳng định đúng? x 1 B F ′ (x) = C F ′ (x) = D F ′ (x) = lnx A F ′ (x) = − x x x Câu 15 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A 15 B C D 17 Câu 14 Cho Câu 16 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = R C d < R D d = Câu 17 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức Câu 18 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? C z · z = a2 − b2 D z + z = 2bi A |z2 | = |z|2 B z − z = 2a Câu 19 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B Q(−2; −3) C P(−2; 3) D N(2; 3) Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D √ Câu 21 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A −1 ≤ m ≤ B m ≥ m ≤ −1 C ≤ m ≤ D m ≥ m ≤ Câu 22 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = 2i C P = + i D P = Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 24 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i√= √ 34 34 B |z| = C |z| = D |z| = 34 A |z| = 34 3 Câu 25 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = −3 − i C z = + i D z = − i R + lnx Câu 26 Nguyên hàm dx(x > 0) x 1 A ln2 x + lnx + C B x + ln2 x + C C x + ln2 x + C D ln2 x + lnx + C 2 Câu 27 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? b A a k · f (x) = k[F(b) − F(a)] b Rb B a f (2x + 3) = F(2x + 3) a C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) hồnh tính theo cơng thức S = F(b) − F(a) Rtrục a D b f (x) = F(b) − F(a) Trang 2/5 Mã đề 001 R8 R4 R4 Câu 28 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = −5 B [ f (x) + g(x)] = 10 R4 R8 C [4 f (x) − 2g(x)] = −2 D f (x) = −−→ Câu 29 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (−1; −1; −3) B (3; 3; −1) C (1; 1; 3) D (3; 1; 1) Câu 30 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx + cosx + C B F(x) = sinx − cosx + C C F(x) = −sinx − cosx + C D F(x) = sinx + cosx + C Câu 31 Biết R1 tính ab A ab = −5 x2 a a 3x − dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b C ab = D ab = 12 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; −4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(1; 4; 4) B ab = Câu 33 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C 2x + y − z − = D −2x + y − z − = z Câu 34 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ B C D A 2 Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 36 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = C A = + i D A = −1 √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm Q √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| < B ≤ |z| ≤ C < |z| < D |z| > 2 2 z+1 Câu 40 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Trang 3/5 Mã đề 001 Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ √ 85 97 B T = C T = 13 D T = 13 A T = 3 Câu 42 Cho số phức z thỏa mãn z + √ √ A B 13 = Tổng giá trị lớn nhỏ |z| z C D Câu 43 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 45 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 + C B sin xdx = cos x + C A (2x + 1)2 dx = 2x R R e C e2x dx = +C D x dx =5 x + C Câu 46 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 125π 500π 250π A B C D 9 x2 + mx + Câu 47 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = −1 B m = C m = D Khơng có m Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B −2 C D Câu 49 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 15 πa2 17 A B C D 4 Câu 50 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001