Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3 2 , ((ℵ) có[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B √ C A 3π D 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; −2) C (−2; −1; 2) D (2; −1; 2) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; −5; 0) C (0; 5; 0) D (0; 0; 5) Câu 4.√ Cho √hai số thực a, bthỏa√mãn a > b > Kết luận sau sai? √ √5 √ 2 − − B a eb D a < b A a > b x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = + C F( ) = − D F( ) = − 4 4 4 Câu Hàm số sau đồng biến R? A y = tan x B y = x√4 + 3x2 + √ C y = x2 D y = x2 + x + − x2 − x + Câu Cho hình S ABCcó cạnh đáy a cạnh bên √ b Thể tích khối chóp là: √ chóp 2 3ab a 3b2 − a2 A VS ABC = B VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = C R = 29 D R = 21 Câu Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho 2a3 a3 A B 6a3 C D 2a3 3 Câu 10 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) Trang 1/5 Mã đề 001 cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B J(−3; 2; 7) C H(−2; −1; 3) D I(−1; −2; 3) R2 R2 Câu 12 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B C −1 Câu 13 Đường thẳng y = tiệm cận ngang đồ thị đây? 2x − 1+x B y = C y = A y = x+1 x+2 − 2x Câu 14 Tập nghiệm bất phương trình 52x+3 > −1 A (−3; +∞) B ∅ C R D −9 D y = −2x + x−2 D (−∞; −3) Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) qua tâm mặt cầu (S ) B (P) không cắt mặt cầu (S ) C (P) tiếp xúc mặt cầu (S ) D (P) cắt mặt cầu (S ) Câu 16 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón B S = πa2 C S = πa2 D S = πa2 A S = πa2 4 Câu 17 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B −9 C 10 D Câu 18 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D 4(−3 + i) (3 − i) Câu 19 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ B |w| = 85 C |w| = 48 D |w| = A |w| = Câu 20 Số phức z = A -1 + 2i + i2017 có tổng phần thực phần ảo 2−i B C Câu 21 Cho P = + i + i + i + · · · + i A P = B P = 2017 D Đâu phương án xác? C P = 2i D P = + i Câu 22 √ Cho số phức z1 = +√2i, z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ A 30 B 130 C 10 D 10 Câu 23 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B m ≥ m ≤ −1 C −1 ≤ m ≤ D ≤ m ≤ √ Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D z Câu 25 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z √ √ A 13 B 11 C D Câu 26 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F ′ (x) = f (x) C F(x) = f ′ (x) D F(x) = f ′ (x) + C Trang 2/5 Mã đề 001 Câu 27 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = 10 C I = D I = R + lnx Câu 28 Nguyên hàm dx(x > 0) x 1 B ln2 x + lnx + C C x + ln2 x + C D x + ln2 x + C A ln2 x + lnx + C 2 R1 Câu 29 Tích phân e−x dx e−1 A e − B − C D e e e Câu 30 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B 2x + y − z − = C −2x + y − z + = D −2x + y − z − = Câu 31 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x + B F(x) = e2x C F(x) = e x D F(x) = e x+1 R8 R4 R4 Câu 32 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R4 A [4 f (x) − 2g(x)] = −2 B [ f (x) + g(x)] = 10 R8 R8 C f (x) = −5 D f (x) = Câu 33 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 + x+1 x+1 + C B x2 x + C C (x − 1) x + C Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D (x + 1) x + C D Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z2 | √ √ √ B P = + C P = D P = 26 A P = 34 + Câu 38 (Sở Nam Định) Tìm mô-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 39 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = (|z| − 4)2 D P = |z|2 − Trang 3/5 Mã đề 001 √ điểm A hình vẽ bên điểm Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm P C điểm N D điểm Q + z + z2 số thực − z + z2 Câu 42 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 C < |z| < 2 D < |z| < 2 Câu 43 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B Câu 44 Biết a, b ∈ Z cho A R C −3 (x + 1)e2x dx = ( B D ax + b 2x )e + C Khi giá trị a + b là: C D Câu 45 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln √ 2x − x2 + có số đường tiệm cận đứng là: Câu 46 Đồ thị hàm số y = x2 − A B C D Câu 47 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A (2x + 1)2 dx = + C B sin xdx = cos x + C 2x R R e C e2x dx = +C D x dx =5 x + C Câu 48 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 50 Hàm số hàm số sau đồng biến R 4x + A y = B y = x4 + 3x2 x+2 C y = −x3 − x2 − 5x D y = x3 + 3x2 + 6x − Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001