Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hàm số nào sau đây đồng biến trên R? A y = tan x B y = √ x2 + x + 1 − √[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hàm số sau đồng biến R? A y = tan x C y = x4 + 3x2 + √ √ B y = x2 + x + − x2 − x + D y = x2 Câu Hàm số sau khơng có cực trị? A y = x2 B y = cos x C y = x + 3x + D y = x3 − 6x2 + 12x − x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 B y = C y = D y = −1 A y = − R R R R 2 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < y < −3 D Nếu < x < π y > − 4π2 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −15 C m = −2 D m = Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C πR3 D 4πR3 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 300 C 600 D 450 √ Câu 8.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: A 3a3 B 3a3 C a3 D 3a3 Câu Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 10 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A a3 B 2a3 D 6a2 C 6a Câu 11 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 40 B 30 C 50 D 60 Câu 12 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 17 C 13 D 20 2 R R Câu 13 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B C −1 D −9 Câu 14 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Trang 1/5 Mã đề 001 Câu 15 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 16 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (0; −3) B (1; −4) C (−1; −4) D (−3; 0) Câu 17 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 − 2i C 11 + 2i D −3 + 2i Câu 18 Với số phức z, ta có |z + 1| A z · z + z + z + B |z|2 + 2|z| + D z + z + Câu 19 Số phức z = A C z2 + 2z + + 2i + i2017 có tổng phần thực phần ảo 2−i B C D -1 Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B m ≥ m ≤ C ≤ m ≤ D −1 ≤ m ≤ √ Câu 21 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −7 C −3 D Câu 22 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B N(2; 3) C Q(−2; −3) D P(−2; 3) Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D − 2i (1 − i)(2 + i) + Câu 24 Phần thực số phức z = 2−i + 3i 11 29 11 29 A − B C D − 13 13 13 13 Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; −4) B (−3; −1; 4) C (3; 1; 4) D (3; −1; −4) Câu 27 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A 2x + y − z − = B −2x + y − z + = C −2x + y − z − = D −2x + y − z + = Câu 28 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) B F ′ (x) + C = f (x) C F(x) = f ′ (x) + C D F ′ (x) = f (x) R1 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy Câu 29 Biết b b x + 6x + tính ab A ab = B ab = −5 C ab = 12 D ab = R2 Câu 30 Tính tích phân I = xe x dx A I = e2 B I = e C I = −e2 D I = 3e2 − 2e Trang 2/5 Mã đề 001 Câu 31 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A N(4; 2; 1) B P(3; 1; 3) C Q(1; 2; −5) D M(−2; 1; −8) R + lnx Câu 32 Nguyên hàm dx(x > 0) x 1 B ln2 x + lnx + C C x + ln2 x + C D x + ln2 x + C A ln2 x + lnx + C 2 Câu R33 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R B R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm Q Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn + z + z2 số thực − z + z2 Khi mệnh đề sau đúng? B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Câu 38 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B z số thực không dương C z số ảo D |z| = Câu 39 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = C P = D P = −2016 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm P Câu 42 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −22016 C 22016 D −21008 Trang 3/5 Mã đề 001 Câu 43 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π ln + 5 B 3π ln + Câu 44 Biết a, b ∈ Z cho A R C (x + 1)e2x dx = ( B π cos x F(− ) = π Khi giá trị sin x + cos x 6π D ln + 6π ax + b 2x )e + C Khi giá trị a + b là: C D Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m > −2 D m < C −3 ≤ m ≤ Câu 46 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 30 3a a 15 3a A B C D 10 2 √ Câu 47 Tính đạo hàm hàm số y = log4 x2 − A y′ = (x2 x − 1)log4 e B y′ = (x2 x − 1) ln C y′ = √ x2 − ln D y′ = 2(x2 x − 1) ln Câu 48 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+2b+3c C P = 2abc D P = 2a+b+c Câu 49 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−3; 0) r Câu 50 Tìm tập xác định D hàm số y = log2 D (−1; 1) 3x + x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−1; 4) C D = (1; +∞) D D = (−∞; 0) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001