1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (909)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,13 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai? A a−[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu √Cho hai√ số thực a, bthỏa√ mãn √a > b > Kết luận sau sai? √5 √ B a > b C a < b A a− < b− D ea > eb Câu Cho hàm số y = A ac < ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d B ad > C bc > D ab < Câu R3 Công thức sai? A e x = e x + C R C cos x = sin x + C R B a x = a x ln a + C R D sin x = − cos x + C Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C 6πR3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; −2) C (−2; −1; 2) D (2; −1; 2) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 300 C 450 D 600 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu Cho khối lăng trụ đứng ABC.A′ B′C ′ có √ đáy ABC tam giác vng cân A,AB = a Biết a Tính thể tích khối lăng trụ ABC.A′ B′C ′ khoảng cách từ A đến mặt phẳng (A′ BC) √ √ a3 a3 a3 a3 A B C D 6 Câu 10 Nếu R6 A −2 f (x) = R6 g(x) = −4 R6 ( f (x) + g(x)) B C −6 D Câu 11 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 40 B 60 C 50 D 30 Câu 12 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 7π 512π 22π A V = B V = C V = D V = 15 Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) cắt mặt cầu (S ) B (P) qua tâm mặt cầu (S ) C (P) không cắt mặt cầu (S ) D (P) tiếp xúc mặt cầu (S ) Câu 14 Đường thẳng y = tiệm cận ngang đồ thị đây? 1+x −2x + 2x − B y = C y = D y = A y = x+2 − 2x x+1 x−2 Câu 15 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B C −2 D −3 − → Câu 16 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 30 C 45◦ D 90◦ Câu 17 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = −3 − 3i C w = + 7i D w = − 3i Câu 18 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = 21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = −21009 i Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C D −9 Câu 20 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D Câu 21 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực phần ảo 2i C Phần thực −3 phần ảo là−2 D Phần thực là−3 phần ảo −2i Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 + 2i C −3 − 2i D −3 − 10i Câu 23 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = √ √ 34 34 B |z| = C |z| = 34 D |z| = A |z| = 34 3 Câu 24 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 C −22016 D −21008 + (1 + i)2017 Câu 25 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B C D 21008 R2 Câu 26 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 27 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) C f (x) = −2023cos(2023x) B f (x) = − cos(2023x) 2023 D f (x) = 2023cos(2023x) Câu 28 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = − (2 − e x ) B F(x) = − e x + C C F(x) = (e x + 5) D F(x) = e x + 2 2 R8 R4 R4 Câu 29 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R8 A [4 f (x) − 2g(x)] = −2 B f (x) = R8 R4 C f (x) = −5 D [ f (x) + g(x)] = 10 Trang 2/5 Mã đề 001 Câu 30 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A 6x + y − z − = B x + y − z − = C x − y + z + = D x + y − z + = R3 Câu 31 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 B (1; 2) C (0; ) D (−1; 0) A ( ; 1) 2 R1 R R1 R1 Câu 32 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A B −8 C −3 D 12 R2 Câu 33 Tính tích phân I = xe x dx A I = e B I = −e2 C I = 3e2 − 2e D I = e2 Câu 34 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = C P = −2016 D max T = Câu 35 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B C D 10 √ Giá trị lớn biểu thức Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 85 97 B T = C T = 13 A T = D T = 13 3 = Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ B √ C D A 2 √ Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm Q Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 z Câu 41 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C 2 D Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Trang 3/5 Mã đề 001 Câu 43 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − C R3 |x2 − 2x|dx = − D R3 R2 |x2 − 2x|dx (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx √ 2x − x2 + có số đường tiệm cận đứng là: Câu 44 Đồ thị hàm số y = x2 − A B C D Câu 45 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 125π 400π 250π 500π B C D A 9 3x Câu 46 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = −2 D m = Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A 6π B C D 5 √ Câu 48 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ (4; +∞) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 49 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B − ln C D ln Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C D −4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:24

w