1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (806)

5 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,25 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Công thức nào sai? A ∫ cos x = sin x +C B ∫ sin x = − cos x +C C ∫ ex =[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu R1 Công thức sai? A R cos x = sin x + C C e x = e x + C R B R sin x = − cos x + C D a x = a x ln a + C Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B log x > log y C ln x > ln y D log x > log y a a ′ ′ ′ ′ Câu Cho hình lập phương ABCD.A B C D Tính góc hai đường thẳng AC BC ′ A 600 B 450 C 360 D 300 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m > e2 C m ≥ e−2 D m > Câu Số nghiệm phương trình x + 5.3 x − = A B C 1 R √3 7x + 1dx Câu Tính I = D 0 45 60 21 20 A I = B I = C I = D I = 28 28 2x x 2x Câu Tính tổng tất nghiệm phương trình 6.2 − 13.6 + 6.3 = 13 A B C D −6 Câu √Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh nó√bằng B 2πRl C πRl D π l2 − R2 A 2π l2 − R2 Câu Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 48 C 76 D 64 Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−1 ; 4) B (−∞ ; −2) C (0 ; +∞) D (−2 ; 0) Câu 11 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B C −2 D Câu 12 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a2 B 6a3 C a3 D 2a3 Câu 13 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho đồng biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) − → Câu 14 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 30 C 45◦ D 90◦ Trang 1/5 Mã đề 001 R Câu 15 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x B f (x) = − C f (x) = −3 cos 3x D f (x) = cos 3x A f (x) = 3 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 16 Cho số phức zthỏa mãn i + trịn (C) √ Tính bán kính rcủa đường √ trịn (C) A r = B r = C r = D r = 25 1 Câu 17 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B 31 C −31 D 17 4(−3 + i) (3 − i)2 Câu 18 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ B |w| = 85 C |w| = D |w| = 48 A |w| = !2016 !2018 1−i 1+i Câu 19 Số phức z = + 1−i 1+i A + i B C −2 D Câu 20 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực dương Câu 21 Cho số phức z thỏa mãn (2 + i)z + A B 13 B Mô-đun số phức z số thực D Mô-đun số phức z số phức 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + 1+i C D Câu 22 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B P(−2; 3) C M(2; −3) D N(2; 3) − 2i (1 − i)(2 + i) Câu 23 Phần thực số phức z = + 2−i + 3i 29 11 11 A − B − C 13 13 13 D 29 13 Câu 24 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −22016 D −21008 Câu 25 Với số phức z, ta có |z + 1|2 A z2 + 2z + B |z|2 + 2|z| + C z + z + Câu 26 Tìm hàm số F(x) khơng nguyên hàm hàm số f (x) = sin2x A F(x) = sin2 x B F(x) = −cos2x C F(x) = −cos2 x D z · z + z + z + 1 D F(x) = − cos2x Câu 27 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z − 15 = B x − 2y + 2z + 15 = C x + 2y + 2z − 15 = D x + 2y + 2z + 15 = R1 R R1 R1 Câu 28 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −3 B C 12 D −8 Câu 29 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x − 2) + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 30 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x + y + z − = B x − = C y − = D z − = Trang 2/5 Mã đề 001 Câu 31 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 x + C B x2 + x+1 + C C (x + 1) x + C D (x − 1) x + C x+1 Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − 12 = B 3x − 2y + z + = C 3x − 2y + z − = D 3x + 2y + z − = Câu 33 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z − = C −2x + y − z + = D 2x + y − z − = Câu 34 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B 22016 C −22016 D −21008 z số thực Tính giá trị biểu Câu 35 Cho số phức z , cho z số thực w = + z2 |z| thức bằng? + |z|2 √ 1 B C D A √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 + z + z2 Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ C P = D P = A P = B P = 2 z Câu 39 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ B C D 2 A Câu 40 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = C P = D P = −2016 √ Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm Q Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Trang 3/5 Mã đề 001 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 31π B 6π C 33π D 32π Câu 44 Chọn mệnh đề mệnh đề sau: R R A x dx =5 x + C B sin xdx = cos x + C C R (2x + 1)2 dx = (2x + 1)3 + C D R e2x dx = e2x +C Câu 45 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 46 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 3x Câu 47 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 27 B 23 C 29 D 25 Câu 49 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+2b+3c C P = 2a+b+c D P = 26abc Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 13:24

w