Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là A 4πR3[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 D πR3 A 4πR3 B πR3 2x x 2x Câu Tính tổng tất nghiệm phương trình 6.2 − 13.6 + 6.3 = 13 A B −6 C D Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B −1 < m < C m ∈ (−1; 2) D m ≥ Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường trịn B Đường hypebol C Đường elip D Đường parabol Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ C R = D R = 21 A R = B R = 29 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; −3; −1) D M ′ (2; 3; 1) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = x − 2x + 3x + D y = tan x Câu Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để 2 phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) cắt mặt cầu (S ) B (P) không cắt mặt cầu (S ) C (P) tiếp xúc mặt cầu (S ) D (P) qua tâm mặt cầu (S ) Câu 11 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a3 B 6a2 C a3 D 2a3 Câu 12 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = + t B x = − ty = tz = + t C x = + ty = tz = − t D x = + 2ty = 2tz = + t z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 13 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường trịn (C) √ √ A r = B r = C r = D r = Trang 1/5 Mã đề 001 Câu 14 Đạo hàm hàm số y = (2x + 1) tập xác định 1 − − A (2x + 1) ln(2x + 1) B 2(2x + 1) ln(2x + 1) 4 − − C − (2x + 1) D − (2x + 1) 3 Câu 15 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 C 6a3 D A 2a3 B 3 Câu 16 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a b) A B C D 3a Câu 17 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ √ 34 34 A |z| = 34 B |z| = C |z| = 34 D |z| = 3 Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương B Mô-đun số phức z số phức C Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực − Câu 19 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C D -1 √ Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ −1 D m ≥ m ≤ Câu 21 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C D −9 Câu 22 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 i Câu 23 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 − i C z = − i A z = −3 + i D z = + i Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = + i D P = 2i 2017 (1 + i) có phần thực phần ảo đơn vị? Câu 25 Số phức z = 21008 i A B C 21008 D Câu 26 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = 10 C I = D I = Câu 27 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = 2 C (x + 2) + y + z = D (x − 2)2 + y2 + z2 = Câu 28 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? b A a k · f (x) = k[F(b) − F(a)] Ra B b f (x) = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a Trang 2/5 Mã đề 001 D Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) R2 Câu 29 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 30 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = 2023cos(2023x) C f (x) = cos(2023x) Câu 31 Biết R1 x2 cos(2023x) 2023 D f (x) = −2023cos(2023x) B f (x) = − 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b tính ab A ab = 12 C ab = D ab = −5 B ab = R8 R4 R4 Câu 32 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = −5 B [ f (x) + g(x)] = 10 R8 R4 C f (x) = D [4 f (x) − 2g(x)] = −2 R + lnx dx(x > 0) x 1 C x + ln2 x + C D ln2 x + lnx + C A x + ln2 x + C B ln2 x + lnx + C 2 Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ D P = A P = B P = C P = 2 √ √ √ 42 √ Câu 35 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z B < |z| < C < |z| < D < |z| < A < |z| < 2 2 Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = + C P = 34 + D P = Câu 33 Nguyên hàm Câu 37 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = 13 C T = D T = 13 3 Câu 39 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = 2016 B max T = C P = D P = −2016 Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 √ Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Trang 3/5 Mã đề 001 Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm M Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ B D C 2 Câu 43 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 12π C 6π D 10π Câu 44 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vuông góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 45 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2abc C P = 2a+b+c D P = 26abc Câu 46 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 500π 250π 125π B C D A 9 Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080251 đồng B 36080254 đồng D 36080255 đồng Câu 48 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 11 17 10 31 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 49 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 3π A ln + B ln + 6π C π cos x F(− ) = π Khi giá trị sin x + cos x 6π ln + 5 D 6π Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001