Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu √Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh 2 A 2π l − R B π l2 − R2 C 2πRl D πRl Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = x3 − 2x2 + 3x + 3x + C y = tan x D y = x−1 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; −3; −1) C M ′ (−2; −3; −1) D M ′ (2; 3; 1) x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = −1 C y = D y = − A y = R R R R 2 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m ≤ C m > D m < Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C πR3 D 6πR3 Câu Cho hai số thực a, bthỏa√ mãn √a > b > Kết luận√nào sau√ sai? √5 √ A a < b B a > b C a− < b− D ea > eb Câu Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 55 220 Câu 10 Tập nghiệm bất phương trình 52x+3 > −1 A (−3; +∞) B (−∞; −3) C R D ∅ Câu 11 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B C D 2022 Câu 12 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B −2 C D Câu 13 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 7π 22π 512π A V = B V = C V = D V = 15 Câu 14 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A C10 B A310 C 103 D 310 Trang 1/5 Mã đề 001 Câu 15 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −6 C −4 D −2 Câu 16 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 27 C 12 D 18 1 25 = + Khi phần ảo z bao nhiêu? Câu 17 Cho số phức z thỏa z + i (2 − i)2 A −17 B −31 C 17 D 31 2(1 + 2i) Câu 18 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B C −9 D −10 z2 Câu 20 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B 11 C D Câu 21 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Chỉ có số C D Khơng có số Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là3 phần ảo C Phần thực phần ảo 2i D Phần thực là−3 phần ảo −2i Câu 23 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B -1 C Câu 24 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z + z + C z2 + 2z + D D |z|2 + 2|z| + 4(−3 + i) (3 − i)2 Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ B |w| = C |w| = 48 D |w| = A |w| = 85 Câu 26 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Câu 27 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A 2x + y − z − = B −2x + y − z − = C −2x + y − z + = D −2x + y − z + = Câu 28 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z + = B 3x + 2y + z − = C 3x − 2y + z − = D 3x − 2y + z − 12 = Câu 29 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x − 1) + C x B (x + 1) + C C x + x Câu 30 Cho hàm số f (x) liên tục R A B R4 x+1 + C D x2 x + C x+1 R4 R3 f (x) = 10, f (x) = Tích phân f (x) C D Trang 2/5 Mã đề 001 Câu 31 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B z − = C y − = D x + y + z − = R1 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy Câu 32 Biết b b x + 6x + tính ab A ab = B ab = 12 C ab = −5 D ab = Câu 33 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A Q(1; 2; −5) B M(−2; 1; −8) C P(3; 1; 3) D N(4; 2; 1) Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ D 2 A B C Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 9 1 B 0; C ; +∞ D ; A ; 4 4 Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 34 + D P = A P = 26 √ 2 Mệnh đề Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 3√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 39 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = B P = 2016 C P = −2016 D max T = Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| < B < |z| < C |z| > D ≤ |z| ≤ 2 2 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = (|z| − 4)2 D P = |z|2 − Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 21 10 31 11 17 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 3/5 Mã đề 001 r Câu 44 Tìm tập xác định D hàm số y = log2 3x + x−1 A D = (−1; 4) B D = (1; +∞) C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Câu 45 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B 12 Câu 46 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B C D ax + b 2x )e + C Khi giá trị a + b là: C D Câu 47 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−3; 0) D (−1; 1) Câu 48 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −2x4 + 4x2 B y = −x4 + 2x2 + C y = x3 − 3x2 D y = −x4 + 2x2 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = D m = −2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong khơng gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 13; 16) A 2→ −u + 3→ −v = (1; 14; 15) B 2→ −u + 3→ −v = (2; 14; 14) C 2→ −u + 3→ −v = (3; 14; 16) D 2→ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001