Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng? A ln x > ln y B[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B loga x > loga y C log x > log y D log x > log y a Câu R2 Công thức sai? A R a x = a x ln a + C C sin x = − cos x + C R B R cos x = sin x + C D e x = e x + C Câu Kết đúng? R sin3 x A sin2 x cos x = + C R C sin2 x cos x = −cos2 x sin x + C sin3 x + C R D sin2 x cos x = cos2 x sin x + C B R a sin2 x cos x = − , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π A C 3π D √ 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = đúng? x B Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = x2 B y = tan x D y = x4 + 3x2 + Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D ax + b Câu Cho hàm số y = có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (2 ; 0) B (0 ; −2) C (3; ) D (0 ; 3) Câu 10 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 A 6a3 B C D 2a3 3 Câu 11 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 55 220 14 Trang 1/5 Mã đề 001 Câu 12 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 − sin x + C B 5x5 + sin x + C C 5x5 − sin x + C D x5 + sin x + C Câu 13 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (0; −3) B (1; −4) C (−1; −4) D (−3; 0) z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 14 Cho số phức zthỏa mãn i + trịn (C) √ Tính bán kính rcủa đường trịn (C) √ B r = C r = D r = A r = Câu 15 Trong khơng gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) không cắt mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) cắt mặt cầu (S ) Câu 17 Cho số phức z thỏa mãn z = luận đúng? A z = z B |z| = (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết 1−i 1+i C z = z D z số ảo Câu 18 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z + z = 2bi B |z2 | = |z|2 C z − z = 2a D z · z = a2 − b2 Câu 19 Phần thực số phức z = A − 11 13 B 11 13 − 2i (1 − i)(2 + i) + 2−i + 3i 29 C − 13 D 29 13 Câu 20 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 2i C −3 − 10i D −3 + 2i 2(1 + 2i) Câu 21 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D Câu 22 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C −3 D z2 Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B C 11 D Câu 25 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B N(2; 3) C P(−2; 3) D Q(−2; −3) Trang 2/5 Mã đề 001 Câu 26 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = C I = D I = 10 R2 Câu 27 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 28 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ + C A f (x)dx = 2x + + C B f (x)dx = √ 2x + R R √ 1√ C f (x) = 2x + + C D f (x)dx = 2x + + C R1 Câu 29 Tích phân e−x dx 1 e−1 A − B C e − D e e e Câu 30 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C 2x + y − z − = D −2x + y − z − = Câu R31 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R R B R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R C R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Câu 32 Biết R1 tính ab A ab = −5 a a 3x − dx = 3ln − , a, b nguyên dương phân số tối giản Hãy x2 + 6x + b b D ab = Câu 33 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? b A a k · f (x) = k[F(b) − F(a)] b Rb B a f (2x + 3) = F(2x + 3) a C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) hoành tính theo cơng thức S = F(b) − F(a) Rtrục a D b f (x) = F(b) − F(a) B ab = C ab = 12 Câu 34 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B z số thực không dương C z số ảo D |z| = Câu 35 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√ + 2b √ √ √ A B C 15 D 10 z Câu 37 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 Trang 3/5 Mã đề 001 √ 1 C D A B Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 | + |z1 − z2 |2 A B 18 C D Câu 39 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −21008 C −22016 D 22016 Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm P C điểm S D điểm R √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 41 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 42 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i C |w|min = D |w|min = A |w|min = B |w|min = 2 Câu 43 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 6π C 10π D 12π Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 46 Hàm số hàm số sau đồng biến R 4x + A y = x3 + 3x2 + 6x − B y = x+2 C y = −x3 − x2 − 5x D y = x4 + 3x2 Câu 47 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 26abc D P = 2a+2b+3c Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m x2 + mx + đạt cực tiểu điểm x = Câu 49 Tìm tất giá trị tham số m để hàm số y = x+1 A m = B Khơng có m C m = D m = −1 Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080251 đồng C 36080253 đồng D 36080255 đồng Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001