Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2, y =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 π x π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = + C F( ) = − D F( ) = − 4 4 4 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + 2m + m+2 m+1 m+2 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+1 m+2 2m + m+2 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = − 4t C x = + 2ty = + tz = D x = + 2ty = + tz = Câu 5.√ Cho √hai số thực a, bthỏa mãn a > b > Kết luận√nào sau√ sai? √5 √ A a > b B ea > eb C a− < b− D a < b Câu Hàm số sau đồng biến R? A y = x√2 √ C y = x2 + x + − x2 − x + B y = x4 + 3x2 + D y = tan x Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; −17; 21) C C(20; 15; 7) D C(6; 21; 21) A C(8; ; 19) Câu √Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh 2 A 2π l − R B πRl C π l2 − R2 D 2πRl Câu Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để 2 phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 10 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 50 B 30 C 60 D 40 √ Câu 11 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 7; 3, 9)· B (3, 1; 3, 3)· C (3, 5; 3, 7)· D (3, 3; 3, 5)· Câu 12 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A 2022 B C D Trang 1/5 Mã đề 001 x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B (2 ; −3 ; 1) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 x Câu 14 Tính đạo hàm hàm số y = 5x B y′ = x C y′ = x.5 x−1 D y′ = x ln A y′ = ln R6 R6 R6 Câu 15 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) Câu 13 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : A B C −6 D −2 Câu 16 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; −1) −n = (1; −2; 3) −n = (1; 3; −2) −n = (1; 2; 3) A → B → C → D → !2016 !2018 1+i 1−i Câu 17 Số phức z = + 1−i 1+i A B + i C −2 D Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B 11 + 2i C −3 + 2i D −3 − 2i Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B −9 C D −10 Câu 20 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = D A = 2k (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 21 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A |z| = B z số ảo C z = z D z = z 2(1 + 2i) Câu 22 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 23 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 C −21008 + D −22016 Câu 24 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là−3 phần ảo −2i C Phần thực phần ảo 2i D Phần thực là3 phần ảo Câu 25 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D 21008 Câu 26 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F(x) = f ′ (x) C F ′ (x) + C = f (x) D F(x) = f ′ (x) + C Câu 27 Tìm hàm số F(x) khơng ngun hàm hàm số f (x) = sin2x A F(x) = − cos2x B F(x) = sin2 x C F(x) = −cos2 x D F(x) = −cos2x R + lnx Câu 28 Nguyên hàm dx(x > 0) x 1 A ln2 x + lnx + C B ln2 x + lnx + C C x + ln2 x + C D x + ln2 x + C 2 Trang 2/5 Mã đề 001 R8 R4 R4 Câu 29 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = B [ f (x) + g(x)] = 10 R4 R8 C [4 f (x) − 2g(x)] = −2 D f (x) = −5 Câu 30 Biết R1 tính ab A ab = 12 x2 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b B ab = C ab = D ab = −5 Câu 31 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − = Điểm không thuộc mặt phẳng (α) A M(−2; 1; −8) B N(4; 2; 1) C P(3; 1; 3) D Q(1; 2; −5) Câu 32 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = − e x + C B F(x) = (e x + 5) C F(x) = e x + D F(x) = − (2 − e x ) 2 2 Câu 33 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 Câu 34 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ B C D 2 √ 2 Mệnh đề Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ 2 2 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = 34 + C P = D P = + Câu 40 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 41 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = Câu 43 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π B 3π ln + C D |w|min = cos x π F(− ) = π Khi giá trị sin x + cos x 6π ln + 5 D ln + 6π Câu 44 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+b+c C P = 2a+2b+3c D P = 2abc x2 + mx + Câu 45 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Khơng có m B m = C m = −1 D m = Câu 46 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + n 2mn + n + C log2 2250 = n 2mn + 2n + m 3mn + n + D log2 2250 = n A log2 2250 = B log2 2250 = Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − A y′ = 2(x2 x − 1) ln B y′ = √ x2 − ln C y′ = (x2 x − 1) ln D y′ = (x2 x − 1)log4 e Câu 49 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −3 ≤ m ≤ C −4 ≤ m ≤ −1 D m > −2 Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001