Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux = y = −3 D Nếux > thìy < −15 Câu 2.√ Cho √hai số thực a, bthỏa mãn√ a > b > Kết luận√nào sau√ sai? √ C a− < b− B a < b D ea > eb A a > b Câu Kết đúng? R A sin2 x cos x = cos2 x sin x + C R C sin2 x cos x = −cos2 x sin x + C sin3 x + C R sin3 x D sin2 x cos x = + C Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a a 2a D B √ C A √ 5 B R sin2 x cos x = − Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường parabol C Đường hypebol D Đường tròn Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 600 C 360 D 300 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B 3π C √ D 3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 29 C R = 21 D R = Câu Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (1; 4) Câu 10 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 3; −2) A → B → C → D → Câu 11 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 Trang 1/5 Mã đề 001001 Câu 12 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 76 B 48 C 56 D 64 Câu 13 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C 3a D 2x+3 Câu 14 Tập nghiệm bất phương trình > −1 A (−3; +∞) B ∅ C (−∞; −3) D R Câu 15 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = −8 − 12i C w = + 12i D w = −8 + 12i Câu 16 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B K(3; 0; 15) C I(−1; −2; 3) D H(−2; −1; 3) (1 + i)(2 − i) Câu 17 Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D |z| = 4(−3 + i) (3 − i)2 Câu 18 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = C |w| = 48 D |w| = 85 Câu 19 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = 2ki D A = Câu 20 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực phần ảo 2i Câu 21 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 22 Tìm số phức liên hợp số phức z = i(3i + 1) B z = − i C z = −3 + i A z = −3 − i D z = + i Câu 23 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B −9 C 10 D 25 1 Câu 24 Cho số phức z thỏa Khi phần ảo z bao nhiêu? = + z + i (2 − i)2 A 17 B 31 C −17 D −31 Câu 25 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C P(−2; 3) D N(2; 3) R2 Câu 26 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 27 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Trang 2/5 Mã đề 001001 B C D Ra Rbb a Rb a f (x) = F(b) − F(a) k · f (x) = k[F(b) − F(a)] b f (2x + 3) = F(2x + 3) a Câu 28 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x + x+1 x+1 + C Câu 29 Giá trị A e − B (x − 1) x + C R0 −1 e x+1 dx B −e C x2 x + C D (x + 1) x + C C e D − e Câu 30 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x A F(x) = sin2 x B F(x) = −cos2x C F(x) = −cos2 x R1 R R1 R1 Câu 31 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A B 12 C −3 D F(x) = − cos2x D −8 Câu 32 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx + cosx + C B F(x) = −sinx − cosx + C C F(x) = sinx + cosx + C D F(x) = sinx − cosx + C Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; −4; 4) B C(−1; 0; −2) C C(1; 0; 2) D C(1; 4; 4) Câu 34 (Sở Nam Định) Tìm mô-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i B |z| = C |z| = D |z| = A |z| = Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = 13 B T = 13 C T = D T = 3 z+1 số ảo Tìm |z| ? Câu 36 Cho số phức z , thỏa mãn z−1 A |z| = B |z| = C |z| = D |z| = Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ B P = C P = + D P = 34 + A P = 26 Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − D P = |z|2 − √ 2 Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 41 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A max T = B P = C P = 2016 D P = −2016 Trang 3/5 Mã đề 001001 Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≤ 2z − i Mệnh đề sau đúng? + iz C |A| < B |A| ≥ D |A| > √ Câu 43 Tính đạo hàm hàm số y = log4 x2 − A y′ = √ x2 − ln B y′ = 2(x2 x − 1) ln C y′ = (x2 x − 1) ln D y′ = (x2 x − 1)log4 e Câu 44 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 2a+2b+3c D P = 26abc Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = 3x cắt đường thẳng y = x + m Câu 46 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C Không tồn m D m = d Câu 47 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a Câu 48 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a > a x > ay ⇔ x > y Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 23 B 25 C 29 D 27 Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 4/5 Mã đề 001001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001001