Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B πR3 C 4πR3 D 2πR3 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = −1 D y = R R R R 2 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H1) D (H3) Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 28 (m) B S = 20 (m) C S = 24 (m) D S = 12 (m) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m < C m > D m ≥ R1 √3 Câu Tính I = 7x + 1dx 45 A I = 28 B I = 20 C I = 21 D I = 60 28 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π D √ A 3π B 3π C 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = + ln ln 5 ln x x C y = − D y = +1− ln ln 5 ln ln − → Câu Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 30 C 45◦ D 90◦ z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 10 Cho số phức zthỏa mãn i + tròn (C) Tính bán kính rcủa đường √ trịn (C) √ C r = D r = A r = B r = Câu 11 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = + 12i B w = −8 + 12i C w = −8 − 12i D w = −8 − 12i Câu 12 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 27 C 21 D 18 Trang 1/5 Mã đề 001 Câu 13 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B 3a C D Câu 14 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 3; −2) A → B → C → D → R Câu 15 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x C f (x) = cos 3x D f (x) = − A f (x) = −3 cos 3x B f (x) = 3 Câu 16 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho đồng biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (−∞; 3) D Hàm số cho nghịch biến khoảng (3; +∞) !2016 !2018 1−i 1+i + Câu 17 Số phức z = 1−i 1+i A B + i C −2 D Câu 18 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −10 C 10 D −9 − 2i (1 − i)(2 + i) + Câu 19 Phần thực số phức z = 2−i + 3i 29 29 11 11 B − C D − A 13 13 13 13 4k−2 4k ∗ Câu 20 Cho A = + i + i + · · · + i + i , k ∈ N Hỏi đâu phương án đúng? A A = B A = C A = 2ki D A = 2k Câu 21 Tính z thỏa mãn z(2 − i) + 13i = √ mô-đun số phức √ √ 34 34 B |z| = C |z| = 34 A |z| = 3 Câu 22 Với số phức z, ta có |z + 1|2 A z + z + B z2 + 2z + C |z|2 + 2|z| + D |z| = 34 D z · z + z + z + Câu 23 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = D P = + i √ Câu 24 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B ≤ m ≤ C −1 ≤ m ≤ D m ≥ m ≤ Câu 25 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z · z = a2 − b2 C z + z = 2bi D |z2 | = |z|2 Câu 26 Tìm hàm số F(x) khơng ngun hàm hàm số f (x) = sin2x A F(x) = sin2 x Câu 27 Tích phân I = A B F(x) = −cos2x R2 C F(x) = −cos2 x (2x − 1) có giá trị bằng: B C D F(x) = − cos2x D Câu R28 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R B R f ′ (x) = f (x) R + C với hàm số f (x) có đạo hàm liên tục R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Trang 2/5 Mã đề 001 Câu 29 Tích phân A − e R1 e−x dx B e − C e−1 e D e Câu 30 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 x + C B x2 + x+1 + C C (x + 1) x + C D (x − 1) x + C x+1 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; −4; 4) B C(1; 0; 2) C C(−1; 0; −2) D C(1; 4; 4) R8 R4 R4 Câu 32 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = B [ f (x) + g(x)] = 10 R4 R8 C [4 f (x) − 2g(x)] = −2 D f (x) = −5 R2 Câu 33 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A B 2025 C −2024 D 2024 Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 A ; +∞ B ; C ; D 0; 4 4 Câu 35 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 2)2 Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 85 97 B T = 13 C T = D T = 13 A T = 3 Câu 38 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ D A B C 13 z Câu 39 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B 2 C D Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D điểm S D Trang 3/5 Mã đề 001 Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a + 2b √ √ √ √ A B 15 C D 10 Câu 43 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x 4x + C y = x+2 B y = x3 + 3x2 + 6x − D y = x4 + 3x2 Câu 44 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 12π C 6π D 8π Câu 45 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 46 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = −2x4 + 4x2 D y = x3 − 3x2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 48 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 49 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx C R3 |x − 2x|dx = − D R3 2 R2 (x − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx Câu 50 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−3; 0) D (−1; 1) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001