Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 = 0 T[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; 2) C (−2; −1; 2) D (2; −1; −2) Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B 3π C 3π D √ A 3 Câu √Cho hai√ số thực a, bthỏa mãn a > b > Kết luận√ sau sai? √ √5 √ − − a b 2 A a e C a > b D a < b Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = sin x D y = tan x Câu Số nghiệm phương trình x + 5.3 x − = A B C Câu Kết đúng? R A sin2 x cos x = −cos2 x sin x + C R C sin2 x cos x = cos2 x sin x + C D sin3 x + C R sin3 x + C D sin2 x cos x = − Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = 13 D m = −15 B R sin2 x cos x = Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ A 2πRl B π l2 − R2 C πRl D 2π l2 − R2 Câu Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C D 3a Câu 10 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A 2a B C D a 2 Câu 11 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Câu 12 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −2 C −8 D −4 Trang 1/5 Mã đề 001 x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C ( ; − ; ) D (2 ; −3 ; 1) 3 3 3 3 Câu 14 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 21 C 12 D 27 Câu 13 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 15 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 16 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 17 B 13 C 18 D 20 z2 Câu 17 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ D A 13 B C 11 Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 − 10i C 11 + 2i D −3 + 2i Câu 19 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2ki C A = D A = 2k Câu 20 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = C P = D P = + i Câu 21 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức Câu 22 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 − i C z = − i D z = −3 + i A z = + i 2017 (1 + i) Câu 23 Số phức z = có phần thực phần ảo đơn vị? 21008 i A 21008 B C D (1 + i)(2 − i) Câu 24 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D |z| = 2(1 + 2i) Câu 25 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D Câu 26 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 x + C Câu 27 Biết B (x + 1) x + C R1 x2 C x2 + x+1 x+1 + C D (x − 1) x + C 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b tính ab A ab = B ab = −5 C ab = D ab = 12 Câu 28 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? a A b f (x) = F(b) − F(a) Rb B a k · f (x) = k[F(b) − F(a)] Trang 2/5 Mã đề 001 C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo công thức S = F(b) − F(a) b Rb D a f (2x + 3) = F(2x + 3) a R8 R4 R4 Câu 29 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R8 R4 A f (x) = −5 B [ f (x) + g(x)] = 10 R8 R4 C f (x) = D [4 f (x) − 2g(x)] = −2 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(−1; −4; 4) C C(−1; 0; −2) D C(1; 0; 2) R1 R R1 R1 Câu 31 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −8 B −3 C 12 D Câu 32 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx − cosx + C B F(x) = sinx − cosx + C C F(x) = sinx + cosx + C D F(x) = −sinx + cosx + C Câu 33 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = C P = D P = 2016 Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C D A 2 Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 85 97 B T = 13 D T = 13 C T = A T = 3 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √2 | √ √ √ thức P = |z1 | + |z A P = 34 + B P = C P = + D P = 26 z Câu 40 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ A B C D Câu 41 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i √ Câu 42 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| < B ≤ |z| ≤ C < |z| < D |z| > 2 2 Trang 3/5 Mã đề 001 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 43 Trong khơng gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 44 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 3a3 Câu 45 Biết a, b ∈ Z cho A R C 12a3 (x + 1)e2x dx = ( B D 6a3 ax + b 2x )e + C Khi giá trị a + b là: C D Câu 46 Chọn mệnh đề mệnh đề sau: (2x + 1)3 + C A R (2x + 1)2 dx = C R sin xdx = cos x + C e2x +C B R e2x dx = D R x dx =5 x + C √ 2x − x2 + có số đường tiệm cận đứng là: Câu 47 Đồ thị hàm số y = x2 − A B C Câu 48 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 3π ln + C 6π D cos x π F(− ) = π Khi giá trị sin x + cos x D 6π ln + 5 Câu 49 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 15 πa2 17 πa2 17 A B C D 4 √ Câu 50 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ (4; +∞) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001