Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết F(x) là một nguyên hàm của hàm số f (x) = x cos2x và F( π 3 ) = π √[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 π π π x F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = + D F( ) = − 4 4 4 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 360 C 300 D 600 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H1) C (H4) D (H3) Câu Biết F(x) nguyên hàm hàm số f (x) = Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 2x x 2x Câu Tính tổng tất nghiệm phương trình 6.2 − 13.6 + 6.3 = 13 C D A −6 B Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m > 2e C m > e2 D m ≥ e−2 √ ′ Câu 7.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ B a3 C 3a3 D 3a3 A 3a3 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ≥ C m ∈ (0; 2) D −1 < m < Câu Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 √ C (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 10 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 64 C 56 D 76 Câu 11 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 12 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 + sin x + C B x5 − sin x + C C x5 + sin x + C D 5x5 − sin x + C Câu 13 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 17 C 20 D 13 Câu 14 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −2 C D −3 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 15 Cho số phức zthỏa mãn i + tròn (C) √ Tính bán kính rcủa đường √ trịn (C) A r = B r = C r = D r = Trang 1/5 Mã đề 001 Câu 16 Tính đạo hàm hàm số y = x 5x D y′ = x ln ln Câu 17 Cho số phức z thỏa mãn √ = 6z − 25i √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w C 13 D A B 29 A y′ = x B y′ = x.5 x−1 C y′ = Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B M(2; −3) C N(2; 3) D Q(−2; −3) Câu 19 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 10i C −3 − 2i D 11 + 2i Câu 20 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 + i C z = −3 − i A z = − i D z = + i Câu 21 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 i C (1 + i)2018 = 21009 i D (1 + i)2018 = −21009 4(−3 + i) (3 − i)2 + Mô-đun số phức w = z − iz + Câu 22 Cho số phức z thỏa mãn z = −i √ √ √ − 2i √ A |w| = B |w| = C |w| = 85 D |w| = 48 Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2ki C A = 2k D A = 1 25 = + Khi phần ảo z bao nhiêu? Câu 24 Cho số phức z thỏa z + i (2 − i)2 A 31 B 17 C −31 D −17 − 2i (1 − i)(2 + i) + Câu 25 Phần thực số phức z = 2−i + 3i 29 11 11 29 A B − C D − 13 13 13 13 R1 R R1 R1 Câu 26 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −3 B −8 C 12 D Câu 27 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F(x) = f ′ (x) C F(x) = f ′ (x) + C D F ′ (x) + C = f (x) R2 Câu 28 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = e C I = −e2 D I = e2 Câu 29 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = 10 B I = C I = D I = Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(1; 0; 2) C C(−1; 0; −2) D C(−1; −4; 4) Câu 31 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A y − = B x − = C x + y + z − = D z − = R + lnx dx(x > 0) Câu 32 Nguyên hàm x 1 A ln2 x + lnx + C B ln2 x + lnx + C C x + ln2 x + C D x + ln2 x + C 2 Câu 33 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Trang 2/5 Mã đề 001 B Ra C Rb D Rb b a a f (x) = F(b) − F(a) b f (2x + 3) = F(2x + 3) a k · f (x) = k[F(b) − F(a)] Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = B |A| < A |A| ≤ 2z − i Mệnh đề sau đúng? + iz C |A| ≥ D |A| > = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A ; B ; +∞ C ; D 0; 4 4 Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − Câu 36 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 85 97 B T = C T = 13 D T = 13 A T = 3 √ Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 39 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 41 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = −1 D A = Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = 34 + C P = D P = + A P = 26 Câu 43 Chọn mệnh đề mệnh đề sau: R2 R3 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + D R3 1 |x − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 3/5 Mã đề 001 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t y = −2 − 3t A z = − 5t x = − 2t y = −2 + 3t B z = + 5t x = + 2t y = −2 + 3t C z = − 5t x = −1 + 2t y = + 3t D z = −4 − 5t Câu 45 Chọn mệnh đề mệnh đề sau: A R x dx =5 x + C C R e2x dx = e2x +C (2x + 1)3 + C B R (2x + 1)2 dx = D R sin xdx = cos x + C Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 A M( ; ; ) 3 10 16 B M( ; ; ) 3 21 C M( ; ; ) 3 11 17 D M( ; ; ) 3 Câu 47 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 48 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B C r Câu 49 Tìm tập xác định D hàm số y = log2 D 12 3x + x−1 A D = (−1; 4) B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) Câu 50 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m < C m > −2 D −4 ≤ m ≤ −1 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001