1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (650)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 126,03 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;−3;−1), N(2;−1; 1) Tìm tọa đ[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (0; −2; 0) C (−2; 0; 0) D (0; 6; 0) Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? C loga x > loga y A ln x > ln y B log x > log y a a D log x > log y x π π π F( ) = √ Tìm F( ) cos x π π ln π π ln C F( ) = + D F( ) = + 4 Câu Biết F(x) nguyên hàm hàm số f (x) = π ln π A F( ) = − 4 π π ln B F( ) = − Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; 3; 1) C M ′ (−2; −3; −1) D M ′ (2; −3; −1) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 3a 5a a A √ B C D √ 5 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H1) C (H3) D (H4) Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 4 D πR3 Câu Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = + t B x = + 2ty = 2tz = + t C x = − ty = tz = + t D x = + ty = tz = − t Câu 10 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −6 C −4 D −2 Câu 11 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 21 C 12 D 18 Câu 12 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A M(0 ; ; 2) B N(1 ; ; 7) C P(4 ; −1 ; 3) D Q(4 ; ; 2) Trang 1/5 Mã đề 001 Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 220 55 Câu 14 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D − → Câu 15 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → Góc hai mặt phẳng (P) (Q) n→ Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 90 B 60 C 30◦ D 45◦ √ √ a Tính góc Câu 16 Cho hình chóp S ABCD có cạnh đáy a đường cao S H mặt bên (S DC) mặt đáy A 90o B 60o C 45o D 30o Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = −3 − i C z = − i − 2i (1 − i)(2 + i) Câu 18 Phần thực số phức z = + 2−i + 3i 29 11 11 B C − A 13 13 13 D z = + i D − 29 13 Câu 19 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ = 6z − 25i √ mơ-đun số phức w A B 13 C 29 D Câu 20 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = √ 34 A |z| = 34 B |z| = C |z| = 34 √ D |z| = 34 Câu 21 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z · z = a2 − b2 C z + z = 2bi D |z2 | = |z|2 Câu 22 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + C z2 + 2z + (1 + i)(2 − i) + 3i √ B |z| = C |z| = D z + z + Câu 23 Mô-đun số phức z = A |z| = D |z| = √ (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D 21008 !2016 !2018 1+i 1−i Số phức z = + 1−i 1+i B + i C −2 D R1 R R1 R1 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] B −3 C −8 D R2 Tích phân I = (2x − 1) có giá trị bằng: B C D Câu 24 Số phức z = A Câu 25 A Câu 26 A 12 Câu 27 A Câu 28 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = −2023cos(2023x) B f (x) = cos(2023x) C f (x) = − cos(2023x) D f (x) = 2023cos(2023x) 2023 Trang 2/5 Mã đề 001 Câu 29 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ √ A f (x)dx = 2x + + C B f (x) = 2x + + C R R 1√ C f (x)dx = √ + C D f (x)dx = 2x + + C 2x + Câu 30 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? a A b f (x) = F(b) − F(a) b Rb B a f (2x + 3) = F(2x + 3) a C Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Rb D a k · f (x) = k[F(b) − F(a)] Câu R31 Mệnh đề sau sai? A R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R B R ( f (x) + g(x)) R = f (x) + g(x), với hàm số f (x); g(x) liên tục R C R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R D ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R Câu 32 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x + y − z + = B x + y − z − = C 6x + y − z − = D x − y + z + = Câu 33 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 B F(x) = − (2 − e x ) C F(x) = − e x + C D F(x) = (e x + 5) A F(x) = e x + 2 2 Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 9 1 B ; C ; +∞ D 0; A ; 4 4 Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | √  √  √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − √ Câu 38 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a + b + c 2 C a + b + c − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca Câu 39 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = D A = −1 √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| > B |z| < C < |z| < D ≤ |z| ≤ 2 2 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A z số thực Tính giá trị biểu + z2 thức √ B C D Câu 42 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 43 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 45 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + B log2 2250 = A log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Câu 46 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 23 25 29 B C D A 4 4 Câu 47 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B ln C − ln D Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 3a3 C 9a3 D 6a3 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 16 11 17 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 10/04/2023, 07:35

w