Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số nghịch biến R Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = −15 C m = D m = 13 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường elip C Đường hypebol D Đường tròn Câu Cho hai số thực a, bthỏa√mãn a > b > Kết luận sau sai? √ √ √ √5 √5 − − B a A a < b eb D a > b , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π D A 3π B 3π C √ 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Trong khơng gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 1; 0) C (0; 0; 5) D (0; 5; 0) Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh √ D 2π l2 − R2 A 2πRl B πRl C π l2 − R2 Câu Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B C −2 D Câu 10 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; −1) −n = (1; 2; 3) −n = (1; 3; −2) −n = (1; −2; 3) A → B → C → D → ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; 3) B (0 ; −2) C (2 ; 0) D (3; ) Câu 11 Cho hàm số y = Câu 12 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 512π 22π 7π A V = B V = C V = D V = 15 Câu 13 Tập nghiệm bất phương trình 52x+3 > −1 A ∅ B (−3; +∞) C R D (−∞; −3) Trang 1/5 Mã đề 001 Câu 14 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = − ty = tz = + t B x = + 2ty = 2tz = + t C x = + ty = tz = − t D x = + ty = tz = + t √ Câu 15 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 3; 3, 5)· B (3, 1; 3, 3)· C (3, 7; 3, 9)· D (3, 5; 3, 7)· Câu 16 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 64 B 56 C 48 D 76 Câu 17 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = B |z1 + z2 | = 13 Câu 18 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D (1 + i)(2 − i) Câu 19 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D |z| = z2 Câu 20 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ B 11 C D 13 A Câu 21 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = √ √ 34 34 A |z| = 34 B |z| = C |z| = 34 D |z| = 3 (1 + i)(2 + i) (1 − i)(2 − i) Câu 22 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z = C z số ảo D z = z z Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 24 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực là−3 phần ảo −2i C Phần thực là3 phần ảo D Phần thực −3 phần ảo là−2 Câu 25 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = 2ki C A = D A = R 3x − a a Câu 26 Biết dx = 3ln − , a, b nguyên dương phân số tối giản Hãy b b x + 6x + tính ab B ab = C ab = 12 D ab = −5 A ab = Trang 2/5 Mã đề 001 R2 Câu 27 Tính tích phân I = xe x dx A I = 3e2 − 2e B I = e2 C I = e D I = −e2 R1 Câu 28 Tích phân e−x dx e−1 1 A B C e − D − e e e ′ Câu 29 Cho hàm số f (x) có đạo hàm với x ∈ R f (x) = 2x + Giá trị f (2) − f (1) A B C D −2 Câu 30 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x − 2)2 + y2 + z2 = Câu 31 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F ′ (x) = f (x) C F(x) = f ′ (x) D F(x) = f ′ (x) + C Câu 32 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x A F(x) = sin2 x B F(x) = −cos2 x C F(x) = −cos2x D F(x) = − cos2x R3 Câu 33 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (−1; 0) B (1; 2) C (0; ) D ( ; 1) 2 Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = 13 B T = 13 C T = D T = 3 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 C P = (|z| − 4)2 D P = |z|2 − A P = (|z| − 2)2 B P = |z|2 − Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ B √ C D A 2 √ điểm A hình vẽ bên điểm Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm N Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 21008 C −22016 D 22016 √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A ≤ |z| ≤ B < |z| < C |z| < D |z| > 2 2 √ Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bao nhiêu? Trang 3/5 Mã đề 001 A Pmax √ 10 = B Pmax √ = Câu 41 Cho số phức z , thỏa mãn A |z| = C Pmax √ = D Pmax √ = z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = D |z| = Câu 42 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 + · · · + z2017 + z2017 Tính giá trị biểu thức P = z2017 2015 + z2016 A P = B P = −2016 C P = D P = 2016 Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng C 36080255 đồng B 36080253 đồng D 36080254 đồng Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 400π 125π 500π A B C D 9 Câu 46 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−1; 1) C (−3; 0) D (1; 5) Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A 6π B C D 5 Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 31 10 16 11 17 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 50 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 9a3 C 6a3 D 3a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001