Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x B Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = sin x x−1 C y = tan x D y = x3 − 2x2 + 3x + Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 450 B 360 C 600 D 300 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+1 2m + m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 2m + m+1 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B 3π C √ A D 3π 3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 29 C R = 21 D R = −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 17 B 20 C 18 D 13 Câu 10 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a3 B 6a2 C a3 D 2a3 Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) tiếp xúc mặt cầu (S ) D (P) qua tâm mặt cầu (S ) Câu 12 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2019 B 2021 C 2022 D 2020 Trang 1/5 Mã đề 001 Câu 13 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B C −2 D −3 Câu 14 Đường thẳng y = tiệm cận ngang đồ thị đây? 2x − −2x + 1+x A y = B y = C y = D y = x+2 x−2 x+1 − 2x Câu 15 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 18 C 12 D 21 √ Câu 16 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 3; 3, 5)· C (3, 5; 3, 7)· D (3, 7; 3, 9)· Câu 17 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B 11 + 2i C −3 − 2i D −3 + 2i Câu 18 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = 2i D P = Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C −9 D 1 25 = + Khi phần ảo z bao nhiêu? Câu 20 Cho số phức z thỏa z + i (2 − i)2 A 31 B −17 C 17 D −31 Câu 21 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + C z + z + (1 + i)(2 − i) Câu 22 Mô-đun số phức z = + 3i √ A |z| = B |z| = C |z| = D z2 + 2z + D |z| = √ Câu 23 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = −3 − 3i C w = − 3i D w = + 7i (1 + i)(2 + i) (1 − i)(2 − i) Câu 24 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z số ảo C z = z D z = z Câu 25 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực B Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức R1 Câu 26 Tích phân e−x dx 1 e−1 A B − C D e − e e e Câu 27 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(1; 0; 2) C C(1; 4; 4) D C(−1; −4; 4) Câu 28 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo công thức S = F(b) − F(a) Trang 2/5 Mã đề 001 B C D Ra Rbb a Rb a f (x) = F(b) − F(a) k · f (x) = k[F(b) − F(a)] b f (2x + 3) = F(2x + 3) a Câu 29 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x)dx = √ + C B f (x) = 2x + + C 2x + R R √ 1√ C f (x)dx = 2x + + C D f (x)dx = 2x + + C Câu R30 Mệnh đề R sau sai? A R k f (x) = k f (x) với số k với hàm số f (x) liên tục R B R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R C R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R D ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − = B 3x − 2y + z + = C 3x − 2y + z − 12 = D 3x + 2y + z − = Câu 32 Biết R1 x2 a 3x − a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b tính ab A ab = B ab = −5 C ab = D ab = 12 R + lnx dx(x > 0) x 1 A x + ln2 x + C B ln2 x + lnx + C C x + ln2 x + C D ln2 x + lnx + C 2 Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 33 Nguyên hàm Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | √ điểm A hình vẽ bên điểm Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm M C điểm N D điểm Q √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B |z| < C ≤ |z| ≤ D < |z| < 2 2 z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 A B C D Trang 3/5 Mã đề 001 √ 2 Mệnh đề Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 40 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i C |z| = D |z| = A |z| = B |z| = Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm S C điểm Q D điểm P Câu 42 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 22016 C 21008 D −22016 x2 + mx + đạt cực tiểu điểm x = x+1 C m = −1 D Không có m Câu 43 Tìm tất giá trị tham số m để hàm số y = A m = B m = √ Câu 44 Tính đạo hàm hàm số y = log4 x2 − x x C y′ = A y′ = √ B y′ = 2(x − 1) ln (x − 1) ln x2 − ln D y′ = (x2 x − 1)log4 e Câu 45 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = −x3 − x2 − 5x 4x + C y = D y = x4 + 3x2 x+2 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 10 31 21 11 17 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 Câu 47 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = D P = + 2(ln a)2 √ Câu 48 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình vơ nghiệm −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001