Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
1,59 MB
Nội dung
ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP GIẢI TÍCH TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 047 Câu Biết , A Đáp án đúng: B Giải thích chi tiết: Ta có: B Giá trị C D Vậy , Câu Giá trị lớn hàm số A Đáp án đúng: C B đoạn C Giải thích chi tiết: Giá trị lớn hàm số A B Lời giải C D đoạn D Trên đoạn ta có Câu Trong , nghiệm phương trình A Đáp án đúng: A B Giải thích chi tiết: Trong A Hướng dẫn giải: Giả sử là: B C , nghiệm phương trình C D là: D nghiệm phương trình Do phương trình có hai nghiệm Ta chọn đáp án A Câu Xét số phức thoả mãn parabol có toạ độ đỉnh Tính A Đáp án đúng: D B số thực Tập hợp điểm biểu diễn số phức ? C Giải thích chi tiết: +) Giả sử D Khi +) số thực Số phức có điểm biểu diễn quỹ tích điểm parabol có phương trình Tập hợp điểm biểu diễn số phức parabol có toạ độ đỉnh Câu Cho số phức thức thỏa mãn điều kiện , biết số phức A Đáp án đúng: A có phần ảo âm B C Giải thích chi tiết: Cho số phức trị biểu thức A Lời giải Giả sử thỏa mãn điều kiện , biết số phức B , phần thực lần phần ảo Tính giá trị biểu C D , phần thực lần phần ảo Tính giá có phần ảo âm D , ta có Suy Do đó, Câu Viết biểu thức dạng lũy thừa với số mũ hữu tỷ A B C Đáp án đúng: D D Câu Trong không gian A Đáp án đúng: A B Giải thích chi tiết: Gọi Câu Biết A , cho hai điểm trung điểm đoạn , giá trị Trung điểm đoạn có tọa độ C có hai nghiệm B tính theo D Biết phương trình D Ta có B C Đáp án đúng: B Câu A Đáp án đúng: C C là: Khẳng định sau đúng? D Câu 10 Giá trị nhỏ hàm số A Đáp án đúng: A B Câu 11 Tọa độ đỉnh A đoạn C c parabol D B C Đáp án đúng: C Câu 12 D Cắt hình trụ có bán kính r = chiều cao 3cm Hãy tính diện tích thiết diện tạo nên mặt phẳng song song với trục cách trục A B C Đáp án đúng: A D Câu 13 Cho hàm số phương trình sau: Biết , có đạo hàm Từ tính tích phân A Đáp án đúng: A B C Giải thích chi tiết: Với , ta có: liên tục thỏa mãn hệ D Tới ta nhận thấy tương đồng với định lí kẹp: Nên tương đương với: Mà nên ta suy Như từ ta suy Mà mặt khác, ta có: , nên suy Đến ta đặt ẩn phụ ta lại đưa dạng: Từ ta suy ra: Khi ta nhân hai vế lượng phương trình nên phương trình tương đương với Với ta suy ta có Như từ ta suy tích phân Câu 14 Cho hàm số có bảng biến thiên sau Điểm cực đại hàm số cho A B C D Đáp án đúng: A Câu 15 Cho A Khi có giá trị B C Đáp án đúng: D D Câu 16 Xét số thực thỏa mãn Giá trị nhỏ biểu thức gần với số đây? A Đáp án đúng: D B C D Giải thích chi tiết: Ta có Đặt Đồ thị hàm số đồ thị hàm số Từ đồ thị suy trịn Ta có tâm , ta BPT: sau: Do tập hợp cặp số thỏa mãn thuộc hình phương trình đường thẳng Do có điểm chung , suy giá trị nhỏ Câu 17 Cho hàm số A Hàm số đạt cực đại C Hàm số đạt cực tiểu Đáp án đúng: B gần với Khẳng định sau khẳng định đúng? B Hàm số đạt cực tiểu D Hàm số đạt cực tiểu Câu 18 Cho số phức thỏa mãn điều kiện Giá trị biểu thức A Đáp án đúng: D B C Giải thích chi tiết: Với số phức z ta có D Do (1) Biến đổi biểu thức (1) (nhân phân phối kết hợp giả thuyết ) ta thu gọn Mặt khác Vậy Câu 19 Giá trị bằng: A Đáp án đúng: D B C Câu 20 Cho tập hợp A C Đáp án đúng: B Chọn khẳng định khẳng định sau B D Giải thích chi tiết: [ Mức độ 1] Cho tập hợp khẳng định sau A B C Lời giải D Ta có D Chọn khẳng định Câu 21 Cho Điểm cực tiểu đồ thị hàm số là: A B C Đáp án đúng: D Câu 22 Đường cong hình vẽ bên đồ thị hàm số đây? A y=x + x C y= x −2 x Đáp án đúng: D B y=− x −2 x2 D y=− x +4 x2 Câu 23 Tập nghiệm phương trình A Đáp án đúng: D B Câu 24 Tìm tham số thực A Đáp án đúng: C Câu 25 để đồ thị hàm số B Cho hàm số Hàm số D C C D có đường tiệm cận ngang D có đồ thị hình sau Tìm tất giá trị thực tham số nghiệm với A C Đáp án đúng: C Giải thích chi tiết: Ta có để bất phương trình B D Đặt (với , bất phương trình viết lại thành: hay Xét hàm số Ta có đoạn Do 10 Dựa vào tương giao đồ thị hàm số parabol đoạn Suy bảng biến thiên hàm số đoạn sau: 11 Bất phương trình cho nghiệm với với Câu 26 bất phương trình Điều tương đương với Cho hàm số liên tục đoạn nghiệm dựa vào tính liên tục hàm số Nếu có giá trị A Đáp án đúng: C B Câu 27 Cho số phức A Đáp án đúng: C C thỏa mãn B A Lời giải Ta có: B C D Tính C Giải thích chi tiết: Cho số phức thỏa mãn D Tính D 12 Khi đó, Câu 28 Cho ba số thực dương không nhau, đồng thời khác Giá trị nhỏ biểu thức A Đáp án đúng: C B Giải thích chi tiết: Vì Câu 29 B Cho hàm số D có đồ thị hình vẽ bên Tìm tất giá trị tham số trình C Đáp án đúng: C Câu 32 B C Đáp án đúng: D Câu 31 D Câu 30 Tập xác định hàm số A D Tìm phương trình tiếp tuyến với đồ thị hàm số điểm A A C không nhau, nên Cho hàm số C Đáp án đúng: B thỏa mãn để phương có nghiệm phân biệt? B D 13 Câu Cho hàm số liên tục đoạn có đồ thị hình vẽ bên Giá trị nhỏ hàm số cho A B Đáp án đúng: A Câu 33 Số phức liên hợp số phức A C B D Số phức liên hợp số phức C Đáp án đúng: D Giải thích chi tiết: Vậy D Câu 34 Cho hàm số bằng: Tổng giá trị lớn giá trị nhỏ hàm số cho A Đáp án đúng: A B C D Giải thích chi tiết: Ta có Vậy Câu 35 Hàm số có nguyên hàm đồng thời thỏa mãn A C Đáp án đúng: C Mệnh đề sau đúng? B Giải thích chi tiết: Hàm số đúng? D có nguyên hàm đồng thời thỏa mãn Mệnh đề sau 14 A C Lời giải Đặt Khi B D Đổi cận: (do ) Chọn B HẾT - 15