ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP KIẾN THỨC TOÁN 12 Thời gian làm bài 40 phút (Không kể thời gian giao đề) Họ tên thí sinh Số báo danh Mã Đề 009 Câu 1 Cho là một nguyên hàm của hàm số và thỏa mãn Tìm A B C D Đá[.]
ĐỀ MẪU CĨ ĐÁP ÁN ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 009 Câu Cho nguyên hàm hàm số A thỏa mãn C Đáp án đúng: D Giải thích chi tiết: Tìm B D Câu Cho hàm số y=f ( x ) hàm số bậc có đồ thị hình vẽ: Số nghiệm thực phương trình f ( x )=−3 A B Đáp án đúng: C Câu Cho hai số thực A C thỏa mãn phương trình C Đáp án đúng: D Giải thích chi tiết: Cho hai số thực D Khi đó, giá trị B D thỏa mãn phương trình Khi đó, giá trị A Lời giải B C D Câu Cho hàm số Hàm số cực đại Ⓐ Ⓑ Ⓒ Ⓓ A Đáp án đúng: D B C Câu Cho hàm số điểm cực trị đây: có đồ thị , B thị qua điểm cực trị khoảng sau đây: Ta có Với , gọi hàm số C Giải thích chi tiết: Cho hàm số B D hàm số bậc có đồ thị qua diện tích hình phẳng giới hạn đường A Đáp án đúng: A A Lời giải C có đồ thị , D D , gọi hàm số diện tích hình phẳng giới hạn đường thuộc khoảng sau hàm số bậc có đồ thuộc hàm số chẵn ta có bảng biến thiên hàm số Lấy đối xứng qua trục tung ta đồ thị hàm số là: là: Suy đồ thị hàm số có điểm cực trị là: Đồ thị hàm số bậc qua điểm suy có dạng: ta , thay tọa độ điểm Ta có diện tích hình phẳng giới hạn đường là: , Câu Trong không gian , cho hai vectơ A Đáp án đúng: B B Giải thích chi tiết: Ta có Câu Tìm số điểm cực trị của hàm số y=x − x A B Đáp án đúng: A Vectơ C C có tọa độ? D D Câu Một hộp đựng cầu màu trắng cầu màu đỏ Lấy ngẫu nhiên từ hộp xác suất để cầu lấy có cầu đỏ A Đáp án đúng: B B C D cầu Tính Giải thích chi tiết: Một hộp đựng cầu màu trắng cầu màu đỏ Lấy ngẫu nhiên từ hộp cầu Tính xác suất để cầu lấy có cầu đỏ A .B C vào D Lời giải Lấy ngẫu nhiên từ hộp cầu nên số phần tử không gian mẫu là: Gọi biến cố “ cầu lấy có cầu đỏ” Số kết thuận lợi là: nên: Câu Cho hình nón có đỉnh , chiều cao Mặt phẳng qua đỉnh thiết diện tam giác Khoảng cách từ tâm đáy hình nón đến mặt phẳng nón giới hạn hình nón A Đáp án đúng: A Giải thích chi tiết: Mặt phẳng Gọi B C tâm đáy nón Từ kẻ cắt hình nón theo thiết diện là trung điểm Gọi Dễ dàng chứng minh Gọi độ dài đường sinh nón, Có cắt hình nón D theo Thể tích khối Suy bán kính đáy nón suy Xét tam giác vng có Có Suy Thể tích khối nón là: Câu 10 Trong mặt phẳng tọa độ , cho bốn điểm , , tập hợp tất điểm không gian thỏa mãn đường trịn, đường trịn có bán kính bao nhiêu? A Đáp án đúng: D B Giải thích chi tiết: • Gọi Ta có: C , Gọi Biết D tập hợp điểm thỏa mãn yêu cầu tốn , , , • Từ giả thiết: Suy quỹ tích điểm , đường trịn giao tuyến mặt cầu tâm mặt cầu tâm • Ta có: dễ thấy: Câu 11 Có số hạng khai triển nhị thức A Đáp án đúng: A B thành đa thức? C D Giải thích chi tiết: Có số hạng khai triển nhị thức A B Lời giải C D Ta có khai triển nhị thức B thành đa thức? số hạng thành đa thức có Câu 12 Một hình nón có bán kính mặt đáy nón thành đa thức có Vậy khai triển nhị thức A , số hạng độ dài đường sinh C Tính thể tích khối D Đáp án đúng: A Câu 13 Biết đồ thị hàm số diện tích tam giác với đường thẳng cắt điểm A (đvdt) B (đvdt) C (đvdt) Đáp án đúng: C Câu 14 Với a b hai số thực dương tùy ý; log ( a b )bằng 1 A log a+3 log b B log a+ log b C log a+ log b D ( log a+ log b ) Đáp án đúng: C Câu 15 Điểm hình vẽ sau biểu diễn số phức A Đáp án đúng: D Câu 16 Cho tứ diện tích khối tứ diện A Đáp án đúng: C Tính B cạnh tính theo bằng: B D (đvdt) Khi mệnh đề sau đúng? C D trọng tâm tam giác C D Thể Giải thích chi tiết: Tam giác Mà Lại có Câu 17 Cho hàm số mà đồ thị hàm số điểm chung nằm trục , Biết A Đáp án đúng: D (hình vẽ), đồ thị hàm số nghiệm Tính diện tích hình phẳng giới hạn đồ thị B C Ta có: trục Phương trình hồnh độ giao điểm đồ thị Do nghiệm , D Giải thích chi tiết: Ta có: Theo ta có có là nghiệm phương trình nên , có nghiệm nên với Do nên Ta có: nên Do , nên diện tích hình phẳng cần tính Câu 18 Trong không gian A Đáp án đúng: A Câu 19 , cho hai điểm B Tập xác định A Đáp án đúng: C Câu 20 C C Toạ độ trung điểm D D C D A B Đáp án đúng: D Giải thích chi tiết: Lý thuyết C D A hai số nguyên dương tùy ý thỏa mãn C Đáp án đúng: D a ≠ b Rút gọn biểu thức A B Đáp án đúng: C Câu 21 Hình đa diện sau có cạnh? Câu 22 Với đoạn thẳng B Cho số thực dương , , mệnh đề đúng? B D Giải thích chi tiết: Với A Lời giải hai số nguyên dương tùy ý thỏa mãn B C D Số số tổ hợp chập k n tính theo cơng thức: Câu 23 Cho mệnh đề sau đây: Nếu tam giác Nếu , mệnh đề đúng? số chẵn số chẵn Nếu tam giác có tổng hai góc tam giác Trong mệnh đề trên, có mệnh đề đúng? A Đáp án đúng: A B cân C D Câu 24 Gọi tập hợp giá trị để đồ thị hàm số giác vng cân Tổng bình phương phần tử A Đáp án đúng: D B C Câu 25 Trong không gian với hệ tọa độ cho trung điểm đoạn A Câu 26 Cho trung điểm đoạn Tìm tọa độ điểm D là: , D B C Đáp án đúng: B Tọa độ điểm , cho hai điểm Giải thích chi tiết: có điểm cực trị tạo thành tam số thực dương thỏa mãn Giá trị biểu thức A Đáp án đúng: A B C D Giải thích chi tiết: Ta có Ta có Câu 27 Cho M, m giá trị lớn giá trị nhỏ biểu thức Khi giá trị B là: A C D Đáp án đúng: B Câu 28 Cho số phức z thoả mãn điều kiện (1 −i) z=2+i Phần ảo số phức z 3 A − B C D − 2 2 Đáp án đúng: A Câu 29 Trong không gian , cho mặt cầu , , thuộc cho giá trị lớn , A Đáp án đúng: A , có tâm B C Ta thấy , , , qua tâm , , đỉnh hình hộp chữ nhật nhận Khi có D Đặt điểm đối xứng với Xét điểm đôi vuông góc với Thể tích khối tứ diện Giải thích chi tiết: Ta có Gọi qua điểm đường chéo Thể tích khối tứ diện , Dấu đẳng thức xảy Câu 30 Cho số phức Môđun A Đáp án đúng: C C Giải thích chi tiết: Cho số phức Môđun môđun với số phức sau đây? A Lời giải D Ta có: B mơđun với số phức sau đây? B .C , D 10 Câu 31 Người ta sản xuất cốc cách xoay miễn phẳng quanh trục Hãy tìm thể tích vật liệu cần đủ để làm nên cốc Biết đơn vị đo cm A C Đáp án đúng: A Giải thích chi tiết: Phương trình hồnh độ giao điểm: B D Vì giả thiết nên ta chọn Như thể tích vật liệu tính bởi: Chú ý: ta có nên ta phá trị tuyệt đối Câu 32 Nếu thì: A C Đáp án đúng: C B D Câu 33 Cắt khối trụ mặt phẳng qua trục ta thiết diện hình chữ nhật cạnh nằm hai đáy khối trụ Biết A Đáp án đúng: D B , Tính theo C có cạnh thể tích khối trụ D Giải thích chi tiết: Ta có Mặt khác xét tam giác vng , ta có: 11 Nên Câu 34 Có tất giá trị nguyên tham số m cho hàm số y=( m− ) x +( m+3 ) x + √ m+1có điểm cực trị? A Vơ số B C D Đáp án đúng: D Giải thích chi tiết: (TRƯỜNG THPT LƯƠNG TÀI SỐ NĂM 2018-2019) Có tất giá trị nguyên tham số m cho hàm số y=( m− ) x +( m+3 ) x + √ m+1 có điểm cực trị? A B C D Vô số Lời giải Cách x =0 y '=4 ( m−3 ) x +2 (m+3 ) x=2 x ( ( m−3 ) x +m+3 )=0 ⇔[ ( m−3 ) x +m+3=0 (¿) Phương trình (*) có nghiệm phân biệt ≠ ⇔ ( m−3 ) ( m+3 )