Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi đó mô đun củ[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w√= 6z − 25i C D A 13 B 29 Câu Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = 2ki D A = Câu Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 − 10i C 11 + 2i D −3 + 2i Câu Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −3 − 3i C w = −7 − 7i D w = − 3i Câu Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z + z = 2bi C |z2 | = |z|2 D z · z = a2 − b2 25 1 = + Khi phần ảo z bao nhiêu? Câu Cho số phức z thỏa z + i (2 − i)2 A 17 B 31 C −31 D −17 Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ B 33 a C 2a D 3 a A a Câu R8 Cho hàm số f (x) = cos x + x Khẳng định đúng? R x2 A f (x)dx = sin x + + C B f (x)dx = − sin x + x2 + C R R C f (x)dx = sin x + x2 + C D f (x)dx = − sin x + x2 + C R4 R4 R4 Câu Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A −1 B C D Câu 10 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B 359 C 354 D 35 A 17 Câu 11 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A B 113 C D 31 z−1 −3 Gọi (P) mặt Câu 12 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (1; −2; 3) C (−1; 2; 3) D (−1; −2; −3) Câu 13 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 14 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Trang 1/5 Mã đề 001 Câu 15 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 16 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 12π C 8π D 6π √ 2x − x2 + có số đường tiệm cận đứng là: Câu 17 Đồ thị hàm số y = x2 − A B C D Câu 18 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 19 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 20 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A B 25π C 5π D −2 − 3i Câu 21 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 22 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A B √ C √ D √ 13 Câu 23 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 trên√mặt phẳng phức Khi đó√ độ dài MN A MN = B MN = C MN = D MN = Câu 24 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = 20 D r = 1+i z Câu 25 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = ′ mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM 15 25 15 25 A S = B S = C S = D S = 4 Câu 26 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B 4π C π D 3π −2 − 3i Câu 27 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = z−z =2? Câu 28 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Parabol C Một đường tròn D Một Elip Trang 2/5 Mã đề 001 Câu 29 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu 30 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 25 A S = B S = C S = 4 D S = 1+i z 15 Câu 31 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 32 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| + 2|z − 1| √ √ √ √ A max T = B max T = 10 C max T = D max T = Câu 33 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(5; 9; 5) C C(−3; 1; 1) D C(3; 7; 4) Câu 34 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 5 Câu 35 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 1 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 Câu 36 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B m < C m < D Không tồn m 3 Câu 37 Cho hàm số y = 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 Câu 38 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vuông góc với d A (P) : x − y + 2z = B (P) : x − 2y − = C (P) : x − y − 2z = D (P) : x + y + 2z = Câu 39 Trong hình đây, có hình đa diện? Trang 3/5 Mã đề 001 Hình A Hình Hình B C D Câu 40 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Điểm cực tiểu hàm số (0; 1) B Đồ thị hàm số có điểm cực đại C Đồ thị hàm số khơng có tiệm cận D Đồ thị hàm số cắt trục tung điểm (0; 1) Câu 41 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) B Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) C Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) D Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) Câu 42 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối mười hai mặt B Khối bát diện C Khối tứ diện D Khối lập phương 2x − Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (−2; +∞) B Hàm số đồng biến khoảng (−2; 2) C Hàm số đồng biến khoảng (2; +∞) D Hàm số đồng biến tập xác định Câu 43 Cho hàm số y = Câu 44 Cho hàm số y = f (x) có bảng biến thiên sau: x −∞ y′ +∞ −2 − − +∞ −2 y −∞ −2 Đồ thị hàm số y = f (x) có đường tiệm cận đứng tiệm cận ngang? A B C D Câu 45 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (−∞; 1) C [1; +∞) D (1; +∞) Câu 46 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (6; 7) B (3; 4) C (4; 5) D (2; 3) Câu 47 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D 83 Câu 48 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Trang 4/5 Mã đề 001 Câu 49 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) A √ √ a Câu 50 Nếu A B R4 −1 √ a f (x)dx = R4 B −1 g(x)dx = −1 C R4 −1 a D √ 2a [ f (x) + g(x)]dx C D Trang 5/5 Mã đề 001