1. Trang chủ
  2. » Cao đẳng - Đại học

Đề thi và đáp án toán rời rạc

12 17,4K 20

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi và đáp án Toán Rời Rạc
Trường học Trường Đại Học Tây Bắc
Chuyên ngành Toán Rời Rạc
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 341,22 KB

Nội dung

Đề thi và đáp án toán rời rạc của sinh vien công nghệ thông tin ĐHTB

Trang 1

TRƯỜNG ĐẠI HỌC TÂY BẮC

Đề số 01 (Đề thi gồm có 01 trang)

ĐỀ THI HỌC PHẦN TOÁN RỜI RẠC

Dành cho:Sinh viên K48CNTT Thời gian: 120 phút

Câu 1:(2điểm) Mỗi đề thi có 3 câu bài tập và 2 câu lí thuyết Trong ngân hàng các câu hỏi

đã có sẵn 7 câu bài tập và 5 câu lí thuyết Hỏi với ngân hàng ấy có thể tạo ra bao nhiêu đề thi khác nhau? Qui ước rằng đảo thứ tự khác nhau trong một đề thi ta không có được một đề thi mới

Câu 2: (3 điểm) Có bao nhiêu xâu nhị phân có độ dài bằng 10 có

c Hoặc được bắt đầu bằng bít 1 hoặc được kết thúc bằng hai bit 00

Câu 3: (3 điểm) Cho đồ thị có hướng G gồm

 5 đỉnh

 9 cung có các trọng số tương ứng trên hình vẽ:

D

E

C

Dùng thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh A tới đỉnh D trên đồ thị G Nêu rõ các bước thực hiện thuật toán?

Câu 4: (2 điểm)

Tìm cây khung nhỏ nhất của đồ thị sau

e

1

2

5 6 4

6 5

1

2

3

3

3

1

2

1

2

5

6 4

6 5

Trang 2

TRƯỜNG ĐẠI HỌC TÂY BẮC

Đề số 02 (Đề thi gồm có 01 trang)

ĐỀ THI KẾT THÚC HỌC PHẦN

TOÁN RỜI RẠC

Dành cho: Sinh viên K48 CNTT Thời gian: 120 phút

Câu 1: (3 điểm):

a) Có bao nhiêu từ có thể khác nhau (có thể vô nghĩa) thu được bằng cách đổi chỗ các

chữ cái và chữ số trong từ “ngay20thang10nam2007”?

b) Có bao nhiêu từ gồm tất cả các chữ cái và chữ số trên sao cho các số 0 đứng ở vị trí

số 1, 4,8,12 trong trật tự từ?

Câu 2: (3 điểm):

a) Có bao nhiêu cách xếp một nhóm sinh viên n nam và n nữ ngồi xung quanh một bàn tròn?

b) Có bao nhiêu cách xếp nhóm sinh viên trong câu a sao cho nữ ngồi xen kẽ nam?

Câu 3: (3 điểm) Tìm đường đi ngắn nhất từ đỉnh a đến các đỉnh còn lại trong đồ thị

a

b

c

d

e

z 4

2 1

5

10

6

3

g

f i

Câu 4:(2 điểm):Trình bày giải thuật Kruskal áp dụng tìm cây khung nhỏ nhất trong đồ thị

sau:

Trang 3

TRƯỜNG ĐẠI HỌC TÂY BẮC

Đề số 03 (Đề thi gồm có 01 trang)

ĐỀ THI KẾT THÚC HỌC PHẦN

TOÁN RỜI RẠC

Dành cho: Sinh viên K48 CNTT Thời gian: 120 phút

Câu 1: (2 điểm)

Giả sử một tổ bộ môn có 10 nam và 15 nữ Có bao nhiêu cách chọn một hội đồng có 6

uỷ viên trong đó số uỷ viên nam bằng số uỷ viên nữ?

Câu 2: (2 điểm)

Có bao nhiêu xâu gồm 10 chữ số của hệ tam phân (0,1 hhoặc 2) chứa đúng hai chữ số 0,3 số 1 và 5 chữ số 2?

Câu 3: (2 điểm)

Có bao nhiêu cách phân công 3 việc cho 5 người làm, nếu một người có thể làm nhiều việc?

Câu 3: (2 điểm) Dùng thuật toán Floyd tìm đường đi ngắn nhất mọi cặp đỉnh của đồ thị

t  

u

x

Câu 4: (2 điểm) Xét đồ thị G gồm các đỉnh A,B,C,D,E,F được cho bởi ma trận trọng số sau:

A 0 4 0 3 4 0

B 4 0 3 2 0 0

C 0 3 0 4 0 5

D 3 2 4 0 2 3

E 4 0 0 2 0 4

F 0 0 5 3 4 0

a) Hãy vẽ dạng biểu diễn hình học của đồ thị G

b) Dùng thuật toán PRIM để tìm cây khung bé nhất của đồ thị G

Trang 4

Đáp án- đề số 1 Môn Toán rời rạc

Câu 1: (2đ) C37 C25=35.10=350

Câu 2: (3đ)

c Số xâu nhị phân có độ dài là 10 được bắt đầu bằng bit 1 là: 29

Số xâu nhị phân có độ dài bằng 10 kết thúc bằng hai bít 00 là: 28

Số xâu nhị phân có độ dài bằng 10 bắt đầu bằng 1 và kết thúc bằng 00 là: 27

Theo nguyên lí bù trừ số xâu nhị phân bắt đầu bằng 1 và kết thúc là 00 là: 29+28-27 Câu 3: (2đ) thuật toán Dijkstra tìm đường đi ngắn nhất giữa hai đỉnh của đồ thị

S là tập đỉnh đã tính xong , L(v) là độ dài đường đi ngắn nhất từ đỉnh A tới đỉnh v khởi tạo S= , L(A)=0, L(v)=

D

Câu 4 (2đ)

Thuật toán kruskal

(a,e), (e,i),(e,f),(f,b),(f,k),(f,q),(q,c),(q,l),(q,h),(h,d),(h,m)

Trang 5

Đáp án- đề số 2 Môn Toán rời rạc

Câu 1: (3đ)

a Hoán vị của các phần tử giống nhau

C420 C316 C213 C311 C29 C17 C16 C15 C14 C13 C12

b Có A14 cách xếp các số 0 vào các vị trí đã định Kí tự còn lại xếp theo cách xếp hoán

vị của các phần tử giống nhau

Theo nguyên lí nhân ta có A14* C316 C213 C311 C29 C17 C16 C15 C14 C13 C12

Câu 2: (3đ)

a (2n-1)! Cách xếp n nam và n nữ ngồi quanh bàn tròn

b (n-1)! cách xếp n nam ngồi quanh bàn tròn vào n vị trí để sao giữa hai người bất

kì cách nhau một khoảng trống

Sau khi xếp xong n nam, ta có số khoảng trống là vậy có n! cách xếp n nữ vào n vị trí

Theo nguyên lí nhân số cách xếp nhóm sinh viên này ngồi quanh bàn tròn xen kẽ nam và nữ là (n-1)!*n!

Câu 3: (2đ)

L(a)=0

L(b)=1 a->b

L(c)=5 a->b->c

L(d)=6 a->h->g->f->d

L(e)=6 a->h->g->f->e

L(f)=5 a->h->g->f

L(i)= 4 a->h->i

L(h)=2

Câu 4( 2 đ): Cây khung nhỏ nhất gồm các cạnh sau

(a,c),(c,b),(b,d),(d,e),(e,z)

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trang 6

 

Đáp án đề số 3 Câu 1(2 điểm) C(10,3)*C(15,3)=5460

Câu 2( 2 điểm) 10!/(2!3!5!)=2520

Câu 3(2 điểm) 53

Câu 4(2 điểm)

Câu 5(2 điểm)

A

B

C

D

E F

4

3

4

2 4

5

4

3 3 3

a hình vẽ

b Thuật toán prim

đỉnh

BA,BC DE E

Trang 7

TRƯỜNG ĐẠI HỌC TÂY BẮC CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM KHOA TOÁN-LÍ-TIN Độc lập - Tự do - Hạnh phúc

 

ĐỀ THI HỌC PHẦN Môn: Toán rời rạc Dành cho sinh viên K46 CNTT

Thời gian: 120 phút

Câu 1:(2điểm) Chứng minh số các tập con hữu hạn của một tâp hợp gồm n phần tử là 2n tập

Câu 2: (2điểm)

a) Chứng minh rằng (pq) tương đương với pq

b) Chứng minh rằng (pr)(qr) tương đương với (pq)r

Câu 3: (2 điểm) Cho đồ thị có hướng G gồm

 5 đỉnh

 9 cung có các trọng số tương ứng trên hình vẽ:

B

D E

C

Dùng thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh A tới đỉnh D trên đồ thị G Nêu rõ các bước thực hiện thuật toán

Câu 4: (2 điểm) Xét đồ thị G gồm các đỉnh A,B,C,D,E,F được cho bởi ma trận trọng số sau:

A 0 4 0 3 4 0

B 4 0 3 2 0 0

C 0 3 0 4 0 5

D 3 2 4 0 2 3

E 4 0 0 2 0 4

F 0 0 5 3 4 0

a) Hãy vẽ dạng biểu diễn hình học của đồ thị G

b) Dùng thuật toán PRIM để tìm cây khung bé nhất của đồ thị G

Câu 5: (2điểm) Tối thiểu hóa hàm boole 3 biến bằng phương pháp Quine McCluskey

Trang 8

TRƯỜNG ĐẠI HỌC TÂY BẮC CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM KHOA TOÁN-LÍ-TIN Độc lập - Tự do - Hạnh phúc

ĐỀ THI HỌC PHẦN Môn: Toán rời rạc Dành cho sinh viên K46 CNTT

Thời gian: 120 phút

Câu 1: (4 điểm):

c) Có bao nhiêu từ có thể khác nhau (có thể vô nghĩa) thu được bằng cách đổi chỗ các

chữ cái và chữ số trong từ “ngay20thang10nam2007”?

d) Có bao nhiêu từ gồm tất cả các chữ cái và chữ số trên sao cho các số 0 đứng ở vị trí

số 1, 4,8,12 trong trật tự từ?

Câu 2: (2 điểm)

Có bao nhiêu xâu nhị phân có độ dài bằng 10 hoặc bắt đầu bằng bít 1 hoặc kết thúc là 00?

Câu 3: (2 điểm) Một khu triển lãm có 16 phòng

được cho trong hình sau:

1

2 3 5

6

10

11 12

13 14

15 16

4

Với qui ước các phòng có cạnh chung thì có

cửa thông nhau Hướng dẫn viên muốn dẫn khách

tham quan qua tất cả các phòng mà không phòng

nào quá một lần Hỏi có thể thực hiện được ý định

đó không?

Câu 4: (2 điểm) Tìm cây khung nhỏ nhất của đồ

thị trên hình vẽ sau đây Nêu rõ các bước thực hiện thuật toán

Câu 5: (2 điểm) Tối thiểu hóa và vẽ mạch tổ hợp của biểu thức sau:

Trang 9

TRƯỜNG ĐẠI HỌC TÂY BẮC CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM KHOA TOÁN-LÍ-TIN Độc lập - Tự do - Hạnh phúc

ĐỀ THI HỌC PHẦN Môn: Toán rời rạc Dành cho sinh viên K46 CNTT

Thời gian: 120 phút

Câu 1:(2 điểm)

Mỗi đề thi có 3 câu bài tập và 2 câu lí thuyết Trong ngân hàng các câu hỏi đã có sẵn 7 câu bài tập và 5 câu lí thuyết

Hỏi với ngân hàng ấy có thể tạo ra bao nhiêu đề thi khác nhau? Qui ước rằng đảo thứ tự khác nhau trong một đề thi ta không có được một đề thi mới

Câu 2: (2 điểm)

Cho trước P(x,y,z): “z=x+y” là công thức 3 biến x,y,z xác định trên tập các số thực Hãy kiểm tra công thức vị từ sau đúng hay sai? Giải

thích tại sao?

a)

x1

x2

x4 x3

7

b

k

c

l

e

h

1

6

4

3

4

Câu 3: (2 điểm)

a) Xác định số mặt lồi của khối đa diện

có 12 đỉnh và bậc của tất cả các đỉnh

đều bằng 5

b) Cho đơn đồ thị như hình bên Tìm

cây khung bé nhất?

c) Không quan tâm tới trọng số của các

cạnh của đồ thị Khi đó đồ thị có thể xem là bản đồ của một tỉnh gồm 10 huyện có đường biên giới tạo bởi các cạnh của đồ thị Hãy xác định số màu tối thiểu để tô màu bản đồ của tỉnh này Sao cho hai huyện kề nhau( có chung biên giới) được tô bởi hai màu khác nhau Hai huyện chung nhau một đỉnh không được coi là kề nhau Với số màu tối thiểu vừa tìm được hãy chỉ ra một phương án tô màu bản đồ trên

Câu 4: (2 điểm) Dùng thuật toán Floyd tìm đường đi ngắn nhất mọi cặp đỉnh của đồ thị

Câu 5:(2 điểm) Dùng phương pháp bảng Karnaugh để tối thiểu hóa biểu thức logic sau

Trang 10

Đáp án đề số 1

Câu 1: Phương pháp qui nạp toán học tập A với |A|=n có 2n tập con

Thật vậy: n=1 có A={a} có hai tập con là {a} và

Giả sử mọi tập A mà |A|=n và |P(A)|=2n ta chứng minh nếu B có n+1 phần tử thì

|P(B) | = 2n+1. Thật vậy B= B 1 với |B 1 | = n, b B 1 Số tập con của B1 là 2n và sau đó cứ mỗi tập con của B1 cho thêm b vào được một tập con của B Như vậy có thêm 2n tâp con nữa

|P(B)|=2n+2n=2.2n=2n+1

Câu 2: chứng minh rằng

a Lập bảng chân lí

b

(pr)(qr)

(pq)r

(pq)r

(pq)r

Câu 3: thuật toán Dijkstra tìm đường đi ngắn nhất giữa hai đỉnh của đồ thị

S là tập đỉnh đã tính xong , L(v) là độ dài đường đi ngắn nhất từ đỉnh A tới đỉnh v

khởi tạo S= , L(A)=0, L(v)=

D

A

B

C

D

E F

4

3

4

2 4

5

4

3 3 3

Câu 4:

a Đồ thị như hình vẽ

b Thuật toán prim

đỉnh

BA,BC DE E

Câu 5:

Đáp án đề số 2:

Trang 11

Câu 1:

c Hoán vị của các phần tử giống nhau

C420 C316 C213 C311 C29 C17 C16 C15 C14 C13 C12

d Có A14 cách xếp các số 0 vào các vị trí đã định Kí tự còn lại xếp theo cách xếp hoán

vị của các phần tử giống nhau

Theo nguyên lí nhân ta có A14* C316 C213 C311 C29 C17 C16 C15 C14 C13 C12

Câu 2:

a Hai mệnh đề A và B được gọi là tương đương nếu chúng có cùng giá trị chân lí

b P(QR)(PQ)(PR)

Câu 3: Coi mỗi phòng là một đỉnh và hai đỉnh được nối cạnh nếu hai phòng có chung cửa Bài toán qui về việc giải bài toán trên đồ thị Tìm đường đi qua tất cả các đỉnh mỗi đỉnh không quá một lần

1 3

7

12

Chứng minh là đồ thị hamintơn (Điều này không xảy ra vì theo định lí Dark số bậc của mỗi đỉnh phải

Hoặc: Chứng minh là đồ thị hai phía và không tồn tại một hành trình đi qua tất cả các đỉnh

mà không bị lặp lại một đỉnh nào đó

Câu 4: Có thể dựng cây khung nhỏ nhất như sau (thuật toán Prim)

tổng 12 Câu 5:

Đáp án đề số 3

Câu 1: C37 C25=35.10=350

Trang 12

Câu 2: a) đúng (luôn luôn tồn tại tổng của hai số thực bất kì)

Câu 3:

a) f=e-v+2=30-12+2=20

b) Thuật toán Kruscal

1

2 3

4

5 7 8

9 10 6

c) Coi mỗi phần đất là một đỉnh của đồ thị, các đỉnh được đánh số từ 1 đến 10, hai phần đất có chung biên giới thì có cạnh chung Bài toán chuyển về bài toán tô màu của đồ thị sau: 3

Đỉnh 2,7,6 tô màu 1 Đỉnh 3,5,10, tô mầu 2 Đỉnh 1,4,8,9 tô mầu 3

Câu 4;

Câu 5:

Ngày đăng: 21/04/2014, 23:53

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w