Bài tập 2.13 Cho Y là sản lượng, L là lượng lao động, và kết quả hồi quy mô hình như sau: Bảng 2.13 Dependent Variable: Y Method: Least Squares Sampleadjusted: 1 20 Included observatio
Trang 1VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS4
BỔ TRỢ SÁCH BÀI GIẢNG KINH TẾ LƯỢNG
Bùi Dương Hải
Tất cả các bài tập lấy mức α = 5% với mọi kiểm định và khoảng tin cậy
CHƯƠNG 2 MÔ HÌNH HỒI QUY ĐƠN
Ví dụ 2.2 trong sách Bài giảng
Năm Phân bón (X) Năng suất (Y) Năm Phân bón (X) Năng suất (Y)
Bảng kết quả hồi quy bằng phần mềm Eviews4, và một số thống kê đánh giá về mô hình
Dependent Variable: Y Method: Least Squares Sample(adjusted): 1 10 Included observations: 10 after adjusting endpoints Variable Coefficient Std Error t-Statistic Prob
R-squared 0.971049 Mean dependent var 57.00000 Adjusted R-squared 0.967430 S.D dependent var 13.47426 S.E of regression 2.431706 Akaike info criterion 4.791920 Sum squared resid 47.30556 Schwarz criterion 4.852437 Log likelihood -21.95960 F-statistic 268.3312 Durbin-Watson stat 1.783613 Prob(F-statistic) 0.000000
Dependent Variable: Y Biến phụ thuộc: Y
Method: Least Squares Phương pháp: Bình phương nhỏ nhất
Sample (adjusted): 1 10 Mẫu (sau điều chỉnh): từ 1 đến 10
Included observations: 10 Số quan sát được sử dụng: 10
Variable Biến số (các biến độc lập)
X Biến độc lập X
Coefficient Ước lượng hệ số: ˆ βj
Std Error Sai số chuẩn của ước lượng hệ số: Se ( ) β ˆj
t-Statistic Thống kê T: Tqs = β ˆj/ Se ( β ˆj)
Prob Mức xác suất (P-value) của cặp giả thuyết
H0: βj = 0 ; H1: βj ≠ 0
R-squared Hệ số xác định (bội): R2
Adjusted R-squared Hệ số xác định điều chỉnh 2
R
S.E of regression Sai số chuẩn của hồi quy: ˆ σ
Sum squared resid Tổng bình phương phần dư: RSS
Durbin-Watson stat Thống kê Durbin-Watson
Mean dependent var Trung bình biến phụ thuộc: Y
Trang 2S.D dependent var Độ lệch chuẩn biến phụ thuộc: SY = TSS n /( − 1)
F-statistic Thống kê F:
2
2
/( ) (1 ) /( 1)
qs
F
−
=
Prob (F-statistic) Mức xác suất (P-value) của cặp giả thuyết: H
0: R2 = 0 ; H1: R2 > 0 (R2 ≠ 0)
Ví dụ 3.1 Số liệu trong sách Bài giảng, có kết quả hồi quy
Dependent Variable: Y Method: Least Squares Sample(adjusted): 1 12 Included observations: 12 after adjusting endpoints Variable Coefficient Std Error t-Statistic Prob
R-squared 0.975657 Mean dependent var 141.3333 Adjusted R-squared 0.970247 S.D dependent var 23.20789 S.E of regression 4.003151 Akaike info criterion 5.824358 Sum squared resid 144.2269 Schwarz criterion 5.945585 Log likelihood -31.94615 F-statistic 180.3545 Durbin-Watson stat 2.527238 Prob(F-statistic) 0.000000
Ma trận phương sai – hiệp phương sai
C 39.10093 -1.416429 -0.727129 X2 -1.416429 0.107960 -0.064747 X3 -0.727129 -0.064747 0.168415
Bài tập 2.12
Cho QA là lượng bán (đơn vị: nghìn lít), PA là giá bán (đơn vị: nghìn đồng/lít) của hãng nước giải khát A, thời gian từ quý 1 năm 2001 đến quý 4 năm 2006, và kết quả hồi quy mô hình như sau
Bảng 2.12
Dependent Variable: QA Method: Least Squares Sample: 2001Q1 2006Q4 Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.556943 Mean dependent var 923.5833 Adjusted R-squared 0.536804 S.D dependent var 292.7673 S.E of regression 199.2530 F-statistic 27.65504 Sum squared resid 873438.5 Prob(F-statistic) 0.000028
a Viết hàm hồi quy tổng thể, hồi quy mẫu, và giải thích ý nghĩa kết quả ước lượng
b Tìm một ước lượng điểm lượng bán trung bình khi giá bán là 20 nghìn đồng/lít
c Lượng bán có thực sự phụ thuộc vào giá bán không?
d Giảm giá có làm tăng lượng bán không?
e Giá giảm một nghìn thì lượng bán thay đổi trong khoảng nào?
f Giá tăng một nghìn thì lượng bán giảm tối đa bao nhiêu?
g Có thể cho rằng giá tăng một nghìn thì lượng bán giảm nhiều hơn 50 nghìn lít hay không?
h Tính các đại lượng TSS, ESS
i Hệ số xác định của mô hình bằng bao nhiêu, đại lượng đó có ý nghĩa thế nào?
k Tìm ước lượng điểm và khoảng cho phương sai sai số ngẫu nhiên
l Dự báo giá trị trung bình và cá biệt của lượng bán khi giá bán là 18 nghìn/lít
Trang 3Bài tập 2.13
Cho Y là sản lượng, L là lượng lao động, và kết quả hồi quy mô hình như sau:
Bảng 2.13
Dependent Variable: Y Method: Least Squares Sample(adjusted): 1 20 Included observations: 20 after adjusting endpoints Variable Coefficient Std Error t-Statistic Prob
R-squared 0.786329 Mean dependent var 551.9000 Adjusted R-squared 0.774458 S.D dependent var 95.17900 S.E of regression 45.20169 F-statistic 66.24160 Sum squared resid 36777.46 Prob(F-statistic) 0.000000
a Viết hàm hồi quy tổng thể, hồi quy mẫu; dấu các ước lượng hệ số có phù hợp với lý thuyết kinh tế không?
b Hệ số chặn của mô hình có ý nghĩa thống kê không? Nếu mức ý nghĩa còn 1% thì kết luận thế nào?
c Biến Sản lượng có phụ thuộc vào biến Lao động không? Nếu có thì mô hình giải thích được bao nhiêu % sự biến động của biến sản lượng?
d Theo kết quả này, khi thêm một đơn vị lao động thì sản lượng thay đổi tối đa bao nhiêu?
e Có thể cho rằng khi giảm một đơn vị lao động thì sản lượng giảm chưa đến 7 đơn vị không?
f Dự báo sản lượng trung bình khi lượng lao động là 150 đơn vị?
CHƯƠNG 3 MÔ HÌNH HỒI QUY BỘI Bài tập 3.5
Cho QA là lượng bán (đơn vị: nghìn lít), PA là giá bán của hãng nước giải khát A, PB là giá bán của hãng nước giải khát B cạnh tranh với hãng A (đơn vị: nghìn đồng/lít) và kết quả hồi quy mô hình như sau:
Bảng 3.5
Dependent Variable: QA Method: Least Squares Sample: 2001Q1 2006Q4 Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.660965 Mean dependent var 923.5833 Adjusted R-squared 0.628676 S.D dependent var 292.7673 S.E of regression 178.4017 Akaike info criterion 13.32242 Sum squared resid 668370.4 Schwarz criterion 13.46968 Log likelihood -156.8691 F-statistic 20.47028 Durbin-Watson stat 2.489845 Prob(F-statistic) 0.000012
Và hiệp phương sai ước lượng hai hệ số góc bằng: – 63.071
a Giải thích ước lượng các hệ số góc
b Khi giá hãng A tăng 1 nghìn, giá hãng B không đổi thì lượng bán hãng A thay đổi thế nào?
c Khi giá hãng B tăng 1 nghìn, giá hãng A không đổi thì lượng bán hãng A thay đổi thế nào?
d Khi giá của hai hãng A và B cùng tăng 1 nghìn thì lượng bán của hãng A có thay đổi không?
Trang 4e Nếu giá của hãng B tăng 1 nghìn, và hãng A giảm giá 1 nghìn, thì lượng bán của hãng A tăng tối đa bao nhiêu?
f Giả sử chưa có kết quả về hệ số R2, hãy nêu các cách để tính được kết quả đó từ các thông tin khác trong bảng
g Biết rằng khi hồi quy QA theo PA và hệ số chặn thì hệ số xác định bằng 0,557 và tổng bình phương phần dư bằng 873438,5; hãy nêu các cách để có thể kiểm định xem có nên bỏ biến PB
ra khỏi mô hình hay không?
Bài tập 3.6
Cho kết quả hồi quy với Y là sản lượng, K là vốn, L là lao động; LOG là logarit tự nhiên của các biến tương ứng
Bảng 3.6
Dependent Variable: LOG(Y) Method: Least Squares Included observations: 20 after adjusting endpoints Variable Coefficient Std Error t-Statistic Prob
LOG(K) 0.510023 0.126959 4.017220 0.0009 LOG(L) 0.599932 0.248400 2.415183 0.0273 R-squared 0.910215 Mean dependent var 6.298380
Adjusted R-squared 0.899652 S.D dependent var 0.180753 S.E of regression 0.057258 F-statistic 86.17079 Sum squared resid 0.055735 Prob(F-statistic) 0.000000 Hiệp phương sai ước lượng hai hệ số góc bằng: – 0,027736
a Viết hàm hồi quy tổng thể, hồi quy mẫu với các biến Y, K, L và giải thích ý nghĩa kết quả ước lượng các hệ số hồi quy
b Phải chăng cả hai biến độc lập đều giải thích cho sự biến động của biến phụ thuộc?
c Khi vốn tăng thêm 1%, lao động không đổi thì sản lượng tăng tối đa bao nhiêu?
d Khi lao động tăng thêm 1%, vốn không đổi thì sản lượng tăng tối thiểu bao nhiêu?
e Khi vốn và lao động cùng tăng 1% thì sản lượng thay đổi như thế nào?
f Tăng vốn 1% đồng thời giảm lao động 1% thì sản lượng có thay đổi không?
g Có thể cho rằng quá trình sản xuất có hiệu quả tăng theo quy mô hay không?
h Khi bỏ biến logarit của lao động khỏi mô hình thì hệ số xác định còn 0,8794 và tổng bình phương phần dư bằng 0,07486 Vậy có nên bỏ biến đó không?
CHƯƠNG 4 HỒI QUY VỚI BIẾN GIẢ
Bài tập 4.4
Cho kết quả hồi quy, với QA là lượng bán (nghìn lít), PA là giá bán (nghìn đồng/lít) của hãng nước giải khát A, H nhận giá trị bằng 1 nếu quan sát vào mùa lạnh, và bằng 0 nếu vào mùa nóng
Bảng 4.4
Dependent Variable: QA Method: Least Squares Sample: 2001Q1 2006Q4 Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.676992 F-statistic 13.97265 Sum squared resid 636775.7 Prob(F-statistic) 0.000038 Cho hiệp phương sai ước lượng hai hệ số của PA và H*PA bằng: – 12,89
Trang 5a Viết hàm hồi quy tổng thể, hồi quy mẫu cho hai mùa nóng và lạnh
b Tìm ước lượng điểm lượng bán của hãng khi giá bán là 20 nghìn vào hai mùa nóng và lạnh
c Hệ số chặn của mô hình có khác nhau giữa hai mùa không?
d Hệ số góc có khác nhau giữa hai mùa không? Nếu có thì chênh lệch trong khoảng nào?
e Vào mùa nào thì việc giảm giá sẽ có tác động đến lượng bán nhiều hơn?
f Vào mùa lạnh, khi giảm giá một nghìn thì lượng bán tăng trong khoảng nào?
g Đánh giá việc đưa yếu tố mùa nóng - lạnh vào mô hình, biết rằng hồi quy QA theo PA và hệ số chặn thì hệ số xác định bằng 0,557 và tổng bình phương phần dư bằng 873438,5
h Có ý kiến cho rằng từ đầu năm 2006 về sau, do bị cạnh tranh mạnh, nên yếu tố giá cả có tác động đến lượng bán mạnh hơn so với trước đó Hãy nêu xây dựng mô hình để có thể kiểm tra
và đánh giá về ý kiến đó
CHƯƠNG 5 HIỆN TƯỢNG ĐA CỘNG TUYẾN
Bài tập 5.4
Cho kết quả hồi quy sau, với QA là lượng bán của hãng nước giải khát A, PA là giá của hãng A,
PB là giá của hãng B, QB là lượng bán của hãng B
Bảng 5.4
Dependent Variable: QA Method: Least Squares Sample: 2001Q1 2006Q4 Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.664147 Mean dependent var 923.5833 Adjusted R-squared 0.613769 F-statistic 13.18329 Durbin-Watson stat 2.442813 Prob(F-statistic) 0.000056
a Viết hàm hồi quy mẫu So sánh với kết quả bảng 3.5, nhận xét gì về dấu và giá trị của các ước lượng hệ số hồi quy?
b Có nhận xét gì về ý nghĩa thống kê của biến PB, so sánh với bảng 3.5 ở trên
c Nghi ngờ mô hình có đa cộng tuyến, hãy nêu một cách để kiểm tra điều đó
d Cho hai kết quả hồi quy phụ sau trên cùng bộ số liệu, hãy cho biết hai kết quả đó dùng để làm
gì, và có kết luận gì về hiện tượng đa cộng tuyến qua từng hồi quy phụ đó?
Bảng 5.5
Dependent Variable: PA Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.134873 F-statistic 1.636949 Durbin-Watson stat 0.292773 Prob(F-statistic) 0.218443
Bảng 5.6
Dependent Variable: QB Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.999643 F-statistic 29441.88 Durbin-Watson stat 2.548328 Prob(F-statistic) 0.000000
Trang 6e Mô hình QA phụ thuộc PA, PB, QB và hệ số chặn có hiện tượng đa cộng tuyến không? Đa cộng tuyến này là hoàn hảo hay không hoàn hảo?
f Hãy nêu một cách khắc phục đơn giản hiện tượng đa cộng tuyến trong câu trên
g Khi bỏ biến QB khỏi mô hình, hồi quy QA theo PA, PB và hệ số chặn (bảng 3.5) thì mô hình này có chắc chắn khắc phục được hiện tượng đa cộng tuyến không? Nếu không, hãy nêu một cách kiểm định có thể sử dụng
h Khi hồi quy PB theo PA và hệ số chặn, thì thu được ước lượng hệ số góc bằng 0,131 và sai số chuẩn tương ứng là 0,086 Qua hồi quy phụ này, có thể kết luận gì về mô hình QB phụ thuộc
PA, PB?
CHƯƠNG 6 HIỆN TƯỢNG PHƯƠNG SAI SAI SỐ THAY ĐỔI
Bài tập 6.5
Cho kết quả hồi quy với Y là sản lượng, L là lượng lao động, K là lượng vốn
Bảng 6.5
Dependent Variable: Y Method: Least Squares Included observations: 20 after adjusting endpoints Variable Coefficient Std Error t-Statistic Prob
R-squared 0.905040 Prob(F-statistic) 0.000000
a Với phần dư thu được của mô hình ban đầu ký hiệu là RESID, hãy viết mô hình hồi quy phụ trong bảng 6.6 và cho biết kết quả đó dùng để làm gì? Kết luận gì thu được?
Bảng 6.6
White Heteroskedasticity Test – Cross terms
F-statistic 3.972746 Probability 0.018776 Obs*R-squared 11.73157 Probability 0.038657 Test Equation: Dependent Variable: RESID^2
Included observations: 20 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.586578 Prob(F-statistic) 0.018776
b Với kết quả tại bảng 6.7, hãy viết mô hình và thực hiện kiểm định để có kết luận?
Bảng 6.7
White Heteroskedasticity Test – No Cross terms
F-statistic 4.961715 Probability 0.009471 Obs*R-squared 11.39090 Probability 0.022505
c Cho biết kết quả hồi quy dưới đây dùng để làm gì, có kết luận gì về mô hình gốc ban đầu, biết RESID là phần dư, và ABS là hàm lấy giá trị tuyệt đối
Bảng 6.8
Dependent Variable: ABS(RESID) 20 observations Variable Coefficient Std Error t-Statistic Prob
R-squared 0.411951 Prob(F-statistic) 0.002283
Trang 7d Khi hồi quy ln của bình phương E theo ln của biến K, có hệ số chặn, thì hệ số xác định của mô hình này bằng 0,105 Hãy cho biết kết quả đó dùng để làm gì, có kết luận gì thu được?
e Hồi quy bình phương phần dư E theo bình phương giá trị ước lượng biến phụ thuộc trong mô hình gốc, có hệ số chặn; thì thu được ước lượng điểm hệ số góc bằng 0,852 và sai số chuẩn tương ứng bằng 0,126 Hãy cho biết kết quả đó dùng để làm gì, dựa trên giả thiết nào, có kết luận gì thu được về mô hình gốc?
f Dựa trên kết luận ở câu trên, hãy nêu một cách khắc phục hiện tượng phát hiện được?
g Hồi quy bình phương của E theo bình phương của L, có hệ số chặn, thì hệ số xác định bằng 0,722 Kết quả đó dùng để làm gì, có kết luận gì? Qua đó hãy nêu một cách để khắc phục hiện tượng phát hiện được?
h Cho kết quả sau đây, hãy cho biết kết quả đó dùng để làm gì, và đã đạt mục đích chưa?
Bảng 6.9
Dependent Variable: Y/L Sample(adjusted): 1 20 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.672855 Prob(F-statistic) 0.000075 White Heteroskedasticity Test – Cross terms
F-statistic 1.069752 Probability 0.417838 Obs*R-squared 5.528789 Probability 0.354799
i Với bảng kết quả trên, viết lại mô hình với các biến Y, L, K Khi đó nếu lao động tăng một đơn
vị thì sản lượng tăng tối đa bao nhiêu?
k Với bảng kết quả dưới đây, viết hồi quy phụ của kiểm định, thực hiện kiểm định và kết luận về ước lượng thu được
Bảng 6.10
Dependent Variable: LOG(Y) Sample(adjusted): 1 20 Variable Coefficient Std Error t-Statistic Prob
LOG(L) 0.599932 0.248400 2.415183 0.0273 LOG(K) 0.510023 0.126959 4.017220 0.0009 R-squared 0.910215 Prob(F-statistic) 0.000000
White Heteroskedasticity Test – Cross terms
F-statistic 1.779605 Probability 0.181710
Obs*R-squared 7.771870 Probability 0.169265
l Với RESID và FITTED là giá trị ước lượng biến phụ thuộc thu được từ bảng 6.10, được kết quả hồi quy trong bảng 6.11 Hãy cho biết kết quả đó dùng để làm gì, kết luận gì về mô hình bảng 6.10 ?
Bảng 6.11
Dependent Variable: RESID^2 Sample: 1 20
Included observations: 20 Variable Coefficient Std Error t-Statistic Prob
C 57497.17 31461.63 1.827533 0.0842
FITTED^2 -0.020171 0.029780 -0.677318 0.5068
R-squared 0.024853 Mean dependent var 37163.64
Durbin-Watson stat 2.202629 Prob(F-statistic) 0.506817
Trang 8CHƯƠNG 7 HIỆN TƯỢNG TỰ TƯƠNG QUAN Bài tập 7.5
Cho kết quả hồi quy sau, với QA là lượng bán của hãng nước giải khát A, PA là giá của hãng A,
PB là giá của hãng B, QB là lượng bán của hãng B
Bảng 7.5
Dependent Variable: QA Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.556943 Mean dependent var 923.5833 Adjusted R-squared 0.536804 S.D dependent var 292.7673 Log likelihood -160.0802 F-statistic 27.65504 Durbin-Watson stat 0.480522 Prob(F-statistic) 0.000028
a Dùng kiểm định Durbin-Watson để kiểm định về hiện tượng tự tương quan bậc 1 của mô hình?
b Cho kết quả kiểm định tự tương quan bậc nhất - AR(1) - dưới đây Hãy viết mô hình hồi quy phụ để kiểm định, cho biết số quan sát trên lý thuyết là bao nhiêu, và số quan sát thực tế là bao nhiêu? Thực hiện kiểm định và kết luận
Bảng 7.6
Breusch-Godfrey Serial Correlation LM Test – AR(1) F-statistic 10.64234 Probability 0.003724 Obs*R-squared 8.071973 Probability 0.004496 Test Equation: Dependent Variable: RESID
Presample missing value lagged residuals set to zero
Variable Coefficient Std Error t-Statistic Prob
RESID(-1) 0.587992 0.180241 3.262259 0.0037 R-squared 0.336332 Prob(F-statistic) 0.013505
c Cho kết quả sau, hãy cho biết mô hình có tự tương quan ở bậc hai không?
Bảng 7.7
Test Equation: Dependent Variable: RESID Presample missing value lagged residuals set to zero
Variable Coefficient Std Error t-Statistic Prob
RESID(-1) 0.678521 0.220174 3.081753 0.0059 RESID(-2) -0.165000 0.225132 -0.732902 0.4721 R-squared 0.353690 Prob(F-statistic) 0.030162
d Với các kết quả kiểm định trên, hãy nêu một cách khắc phục khuyết tật của mô hình gốc dựa trên thống kê Durbin-Watson?
e Cho kết quả ước lượng sau, cho biết kết quả này dùng để làm gì, đã đạt mục đích chưa?
Bảng 7.8
Dependent Variable: QA-0.76*QA(-1) Sample(adjusted): 2 24
Included observations: 23 after adjusting endpoints Variable Coefficient Std Error t-Statistic Prob
PA-0.76*PA(-1) -48.2352 11.88927 -4.057035 0.0006 R-squared 0.439395 Mean dependent var 186.7652 Durbin-Watson stat 2.207469 Prob(F-statistic) 0.000567
Trang 9Breusch-Godfrey Serial Correlation LM Test – AR(1) F-statistic 0.447593 Probability 0.511130 Obs*R-squared 0.503464 Probability 0.477982
f Với kết quả ước lượng trên, cho biết ước lượng điểm hệ số chặn, hệ số góc trong mô hình hồi quy QA theo PA, viết hàm hồi quy mẫu? Từ đó ước lượng mức thay đổi của lượng bán khi giá tăng 1 đơn vị?
g Với kết quả ước lượng bằng phương pháp Cochrane-Orcutt trong bảng 7.9, cho biết phương pháp hội tụ sau bao nhiêu bước lặp? Ước lượng điểm hệ số tự tương quan bậc 1 được ước lượng bằng bao nhiêu?
Bảng 7.9
Dependent Variable: QA Sample(adjusted): 2 24 Included observations: 23 after adjusting endpoints Convergence achieved after 4 iterations
Variable Coefficient Std Error t-Statistic Prob
R-squared 0.512028 Mean dependent var 905.1304 Durbin-Watson stat 1.954003 Prob(F-statistic) 0.000766
h Khi thêm trễ bậc 1 của biến QA vào mô hình gốc, có kết quả sau; hãy kiểm định hiện tượng tự tương quan bậc 1 của mô hình này? Cho biết kiểm định B-G được thực hiện như thế nào?
Bảng 7.10
Dependent Variable: QA Sample(adjusted): 2 24 Included observations: 23 after adjusting endpoints Variable Coefficient Std Error t-Statistic Prob
QA(-1) 54.23958 24.38371 2.224419 0.0378 R-squared 0.608809 Mean dependent var 905.1304
Durbin-Watson stat 2.464703 Prob(F-statistic) 0.000084 Breusch-Godfrey Serial Correlation LM Test: AR(1)
F-statistic 1.579754 Probability 0.224029 Obs*R-squared 1.765539 Probability 0.183935
CHƯƠNG 8 ĐỊNH DẠNG HÀM HỒI QUY
Bài tập 8.1
Cho kết quả hồi quy sau, với QA là lượng bán của hãng nước giải khát A, PA là giá của hãng A,
PB là giá của hãng B, QB là lượng bán của hãng B
Bảng 8.1
Dependent Variable: QA Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.556943 Mean dependent var 923.5833 Durbin-Watson stat 0.480522 Prob(F-statistic) 0.000028
a Hãy nêu cách để kiểm định dạng hàm hồi quy, sự thiếu biến của mô hình?
Trang 10b Cho kết quả kiểm định Ramsey RESET dưới đây, viết lại hồi quy phụ, thực hiện kiểm định để cho kết luận về định dạng của mô hình?
Bảng 8.2
Ramsey RESET Test: number of fitted term: 1 F-statistic 7.240588 Probability 0.013685 Log likelihood ratio 7.109707 Probability 0.007667 Test Equation:
Dependent Variable: QA Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
FITTED^2 -16395.22 6092.986 -2.690834 0.0137 R-squared 0.670538 Mean dependent var 923.5833 Durbin-Watson stat 2.522139 Prob(F-statistic) 0.000009
c Cho kết quả dưới đây, với RESID là phần dư từ mô hình gốc Hãy cho biết kết quả đó dùng để làm gì, có kết luận gì về mô hình gốc?
Bảng 8.3
Dependent Variable: RESID Sample: 1 24
Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
FITTED^2 -16395.22 6092.986 -2.690834 0.0137 R-squared 0.256389 Mean dependent var -4.87E-13 Durbin-Watson stat 2.522139 Prob(F-statistic) 0.044579
d Khi thêm biến PB vào mô hình, được kết quả dưới đây, hãy viết các hồi quy phụ ứng với các kiểm định Ramsey, và thực hiện kiểm định để cho kết luận?
Bảng 8.4
Dependent Variable: QA Included observations: 24 Variable Coefficient Std Error t-Statistic Prob
R-squared 0.660965 Mean dependent var 923.5833 Durbin-Watson stat 2.489845 Prob(F-statistic) 0.000012
Ramsey RESET Test: number of fitted terms: 1
F-statistic 3.025354 Probability 0.097342 Log likelihood ratio 3.380728 Probability 0.065963
Ramsey RESET Test: number of fitted terms: 2
F-statistic 1.748459 Probability 0.200905 Log likelihood ratio 4.054543 Probability 0.131694
e Sau khi hồi quy mô hình trong bảng 8.4 thu được phần dư và giá trị ước lượng Hồi quy phần
dư theo PA, PB và bình phương giá trị ước lượng thì thu được kết quả có hệ số xác định bằng 0,088 Hãy cho biết kết quả đó dùng để làm gì, và có kết luận gì thu được?