1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chuyên đề phương trình lượng giác 2014

23 981 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 1,2 MB

Nội dung

Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 1 CHUYÊN ĐỀ: PHƯƠNG TRÌNH LƯỢNG GIÁC A. TÓM TẮT LÝ THUYẾT I. CÁC CÔNG THỨC LƯỢNG GIÁC CẦN NẮM 1. Hệ thức cơ bản giữa các ham số lượng giác: 22 2 2 2 2 cos sin 1 sin tan ( , ) cos 2 cos cot ( , ) sin tan .cot 1 1 1 tan ( , ) 2 cos 1 1 cot ( , ) sin xx x x x k k Z x x x x k k Z x xx x x k k Z x x x k k Z x                         2. Giá trị hàm số lượng giác của các cung đặc biệt Cung 0 0 0 0 30 6  0 45 4  0 60 3  0 90 2  0 180  5. Các cung liên quan đặc biệt Cung đối nhau:  sin(- x) = - sinx  cos(- x) = cosx  tan(- x) = - tanx  cot(- x) = - cotx Cung bù nhau:  sin( - x) = sinx  cos( - x) = - cosx  tan( - x) = - tanx  cot( - x) = - cotx Cung phụ nhau:  sin(/2 - x) = cosx  cos( /2 - x) = sinx  tan( /2 - x) = cotx  cot(/2 - x) = tanx Cung hơn kém   sin(x  ) = - sinx Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 2 Hàm sinx 0 2 1 2 2 2 3 1 0 cosx 1 2 3 2 2 2 1 0 -1 tgx 0 3 3 1 3 || 0 cotgx || 3 1 3 3 0 || 3. Công thức cộng cos (a ± b) = cosacosb  sinasinb sin (a ± b) = sinacosb ± sinbcosa tan tan tan( ) 1 tan tan ab ab ab   tana tanb cot(a b) 1 tana tanb   4. Công thức nhân đôi, nhân ba  cos(x  ) = - cosx  tan(x  ) = tanx  cot(x  ) = cotx 6. Biểu diễn cosa , sina , tga theo t = a tan 2 (tham khảo) 2 2 2 2 1 2 2 cos ;sin ,tan 1 1 1 t t t a a a t t t        7. Công thức biến đổi tích thành tổng       )sin()sin( 2 1 cos.sin )cos()cos( 2 1 sin.sin )cos()cos( 2 1 cos.cos bababa bababa bababa    8. Công thức biến đổi tổng thành tích cos cos 2cos cos 22 cos cos 2sin sin 22 sin sin 2sin cos 22 sin sin 2cos sin 22 sin( ) tan tan cos .cos a b a b ab a b a b ab a b a b ab a b a b ab ab ab ab             9. Một số công thức đặc biệt : Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 3 3 3 3 22 •cos2a = cos a sin a 2 =2cos a 1 2 =1 2sin a •sin2a = 2sinacosa 2tana •tan2a = 2 1 tan a 2 cot a - 1 cot2a = 2cota - - - - cos3a 4cos a 3cosa sin3a 3sina 4sin a sin3a 3tana tan a tan3a cos3a 1 3t          2 an a 4 4 2 6 6 2 1 sin cos 1 sin 2 2 3 sin cos 1 sin 2 4 x x x x x x       sina cosa 2cos(a ) 2sin( a) 44 sina cosa 2 (a ) 4 sin           aa 22 1 cosa 2cos ;1 cosa 2sin 22     II. CÁC PTLG THƯỜNG GẶP 1. Phương trình lượng giác cơ bản  x a k2 sinx sina (k Z) x a k2               cosx cosa x a k2 (k Z)        tgx tga x a k (x,a k ) 2           cotgx cotga x a k (x,a k )       Các phương trình đặc biệt sinx = 0  x = k; sinx = -1  x k2 2      ; sinx = 1  x k2 2     cosx = 0     k 2 x ; cosx = -1   2kx  ; cosx = 1  x k2 ; Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 4 tgx = 0  x = k; tgx = -1    kx  4 ; tgx = 1  xk 4     cotgx =0    k 2 x ; cotgx = -1  xk 4      ; cotgx =1   kx  4            1 3 1 3 sin cos ; cos sin 2 2 2 2 x x x x         sin 0 cos 1; sin 0 cos 1x x x x 2. Phương trình bậc nhất đối với sinx và cosx: asinx + bcosx = c (a, b, c ≠ 0) Phương pháp: * Cách 1: Dùng góc phụ Điều kiện để phương trình có nghiệm: c 2 ≤ a 2 + b 2 Ta có: asinx + bcosx = c  sinx + bc cosx aa   sinx + tgαcosx = c a (Với tgα = a b , - /2 < α < /2)  sinx + sin cos   cosx = c a  sinxcosα + sinαcosx = c a cosα  sin(x + α) = c a cosα (1) Với điều kiện đầu bài ta được: c a cosα = sinβ ; -/2 ≤ β ≤ /2 Từ (1) ta được phương trình cơ bản: * Cách 2: (Tham khảo) Đặt x t tg 2  (với x ≠  + k2 ) Ta có: a.sinx + b.cosx = c sin(x + α) = sinβ Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 5  2 1t 2t a. b. c 22 1 t 1 t     (b + c)t 2 – 2.a.t + c –b = 0 (2) Giải phương trình (2) nếu ta được nghiệm t 0 , ta sẽ có phương trình cơ bản: 0 x tg t 2  Ta thử lại xem x = (2k +1) có là nghiệm phương trình không. * Cách 3: Chia 2 vế cho 22 ab và đặt a cos 22 ab   ; b sin 22 ab   ; ta đưa về dạng: sin(x + ) = c 22 ab 3. Phương trình bậc nhất theo một hàm số lượng giác Các dạng phương trình:  asinx = b (acosx = b)  atgx = b (acotgx = b) - Thông thường ta gặp các phương trình mà phải qua một số phép biến đổi lượng giác cơ bản ta mới đưa được về một trong các dạng phương trình trên. - Cách giải: + Đưa chúng về dạng PTLG cơ bản + Chú ý: |sinu|  1, |cosu|  1 4. Phương trình bậc hai theo một hàm số lượng giác  PT dạng: asin 2 x + bsinx + c = 0 (hay acos 2 x + bcosx + c = 0) với a ≠ 0 Phương pháp: Đặt t = sinx, -1≤ t ≤ 1 (Hay t = cosx) Phương trình trở thành: a.t 2 + b.t + c = 0 Nếu PT này có nghiệm t 0 (-1≤ t 0 ≤ 1), ta được PT cơ bản: sinx = t 0 (hay cosx = t 0 )  PT dạng: atg 2 x + btgx + c = 0 (hay acotg 2 x + bcotgx + c = 0) với a ≠ 0 Phương pháp: Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 6 Đặt t = tgx , t  R (hay t = cotgx) Phương trình trở thành: a.t 2 + b.t + c = 0 Nếu phương trình có nghiệm t 0 ta được phương trình cơ bản: tgx = t 0 hay (cotgx = t 0 ) Nhớ để tgx có nghĩa  x ≠ /2 +k 5. Phương trình đẳng cấp: asin 2 x + bsinxcosx +ccos 2 x = 0 (1) Phương pháp giải: (Nếu cho ở dạng: asin 2 x + bsinxcosx +ccos 2 x = d  0 thì thay d = d(sin 2 x +cos 2 x) đưa về dạng (1) ) * Cách 1: Thay sin 2 x = 1 cos2x 2  ; sinx.cosx = 1 .sin2x 2 ; cos 2 x = 1 cos2x 2  ; Ta có: a. 2 1 (1 – cos2x) + b. 2 1 .sin2x + c. 2 1 .(1+cos2x) = 0  b.sin2x + (c - a) cos2x = -(a + c) Phương trình này có dạng: A.sint + B.cost = C (đã biết cách giải) * Cách 2:  Nếu a = 0: thì phương trình (1) trở thành: bsinx.cosx +c.cos 2 x = 0  cosx(b.sinx + c.cosx) = 0 Phương trình này đã biết cách giải.  Nếu a ≠ 0; x = /2 + k không là nghiệm của phương trình nên: x ≠ /2 + k  cosx ≠ 0, Chia hai vế của (1) cho cos 2 x ta được: 22 2 2 2 sin x sinx.cosx cos x a. b. c. 0 cos x cos x cos x   a.tg 2 x + b.tgx + c = 0 (Đã biết cách giải) 6. Phương trình đối xứng: a(sinx + cosx) + bsinxcosx + c = 0 Phương pháp: Đặt t = sinx + cosx = 2cos(x ) 4    - 2t2  Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 7  sinx.cosx = 2 t1 2  : Phương trình trở thành: bt 2 + 2.a.t +2c – b = 0 Nếu phương trình có nghiệm t 0 , ta giải phương trình: 2cos(x ) 4   = t 0 với 2 t 2 0  Ghi chú: Đối với phương trình dạng: a(sinx – cosx) + bsinxcosx + c = 0 Đặt t = sinx – cosx = 2sin(x ) 4   cách giải tương tự. B. BÀI TẬP TỰ LUYỆN (PT LG cơ bản và PTLG thường gặp) Bài 1: Giải các phương trình sau: 1) cos(x ) sin( 2x) 0 2) tg( x)tg( 2x) 1 3 2 3 3 8 3) cos( 3x) cos( 3x) 1 4) cotgx tgx 2tg2x 4tg4x 33 3                     Bài 2: Giải các phương trình sau: 6 6 4 4 2 2 2 2 2 1) 4(sin x cos x) 2(sin x cos x) 8 4cos 2x 2) sin x + sin 3x = cos x + cos 3x 3) 16cosx cos2x cos4x = 3sin8x cos2x 3 4) cosx sinx cosx 2        Bài 3: Giải các phương trình sau: Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 8 2 2 2 22 66 22 1) sin x + sin x tg x 3 cos x sin x 2) 8cotg2x = .sin2x cos x sin x 3) 5cos x + sin x = 4 4) sinx tg2x 3(sinx 3tg2x) 3 3 1 5) 3sinx cosx cosx        PHƯƠNG TRÌNH BẬC NHẤT – BẬC HAI THEO MỘT HÀM SỐ LƯỢNG GIÁC Bài 1: Giải các phương trình sau: 1) cos 3 x + sinx – sin 3 x = 0 2) sin3x + cos2x = 1 + 2sinx cos2x 3) 22 22 sin 3x cos 3x 6cos2x 3 sin x cos x    4) 2 tgx tg(x ) tg(x ) 3 3 33       Bài 2: Giải các phương trình sau: 1) 5sin 2 x – 4sinx – 1 = 0 2) cos2x – 3cosx – 4 = 0 3) 3tg2x – 3tgx - 5 2 = 0 4) 4cotg2x = 22 66 cos x sin x cos x sin x   5) 2tgx + cotg2x = 2 sin2x + 1 sin2x Bài 3: Giải các phương trình sau: 1) 2cos7x cosx = 2cos6x cos2x + cos 2 2x + sin 2 x – 1 2) 3(cos 2 x + 2 1 cos x ) + 5(cosx + 1 cosx ) = 2 Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 9 3) 4sin 5 x cosx – 4cos 5 x sinx = cos 2 4x + 1 4) sin 4 x + cos 4 x – cos2x + 1 4 sin 2 2x = 2 5) 2 2 4x cos cos x 3 0 1 tg x    PHƯƠNG TRÌNH BẬC NHẤT THEO SIN VÀ COS (a.sinu + b.cosu = c) Giải các phương trình sau: 3 2 1) 3sin x cosx 2 0 2) 3sinx + 1 = 4sin x 3cos3x 3) 3sin x cosx 2cos(x ) 2 3 4) (2sinx - cosx)(1 + cosx) = sin x 5) 1 cosx sin3x cos3x sin 2x sin x               2 3 6) 2cosx + 4sinx = cosx 7) (sin2x + 3cos2x) 3 cos( 2x) 6     PHƯƠNG TRÌNH ĐẲNG CẤP Giải các phương trình sau: 1) 2sin 2 x – 3cos 2 x + 5sinx cosx = 2 2) 3 cos 3 x – 5sin 3 x + 7sinx - 8 3 cosx = 0 3) 14sin 4 x + 2sin 2 xcos 2 x – 14sin 2 x - 8sinxcosx – 1 = 0 4) 2cosx 3 x + 3cosx – 8sin 3 x = 0 5) 6sinx – 2cos 3 x = 5sin4xcosx 2cos2x 6) sin 3 (x + 4  ) = 2 sinx 7) 3 2 cosx – sinx = cos3x + 3 2 sinx sin2x Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 10 PHƯƠNG TRÌNH ĐỐI XỨNG Giải các phương trình sau: 1) 4 2 (sinx + cosx) + 3sinx – 11 = 0 2) (sinx + cosx) 3 + sinx cosx – 1 = 0 3) (sinx - cosx) 4 - 6sinx cosx – 1 = 0 4) 1 + 2sinx cosx = |cosx – sinx| 5) sinx + cosx + 2 + tgx + cotgx + 1 sinx + 1 cosx = 0 6) cos 3 x – sin 3 x = cos2x 7) (1 - sin2x)(sinx + cosx) = cos2x C. CÁC PHƯƠNG PHÁP GIẢI PTLG ĐẶC BIỆT I. BIẾN ĐỔI TƯƠNG ĐƯƠNG ĐƯA VỀ PTLG THƯỜNG GẶP II. BIẾN ĐỔI VỀ PHƯƠNG TRÌNH TÍCH 1 2 12 A = 0 A = 0 A .A A = 0 A = 0 n n        III. ĐẶT ẨN SỐ PHỤ ĐƯA VỀ PTLG THƯỜNG GẶP Chú ý:  Các dạng phương trình bậc ba: Đã biết cách giải  Các dạng phương trình bậc bốn: Dạng 1: Phương trình bậc bốn trùng phương: ax 4 + bx 2 + c = 0 (a  0) Đặt t = x 2  0 Dạng 2: Phương trình bậc bốn: (x + a) 4 + (x + b) 4 = c Đặt t = x + ab 2  đưa về phương trình trùng phương Dạng 3: Phương trình bậc bốn: (x + a)(x + b)(x + c)(x + d) = K (Với a + b = c + d) [...]... Bài 6: Cho phương trình: 2(m - 1)sinx + 4m2 cosx = 3 cos x (1) π 4 Tìm m để (1) có đúng hai nghiệm x  (0; ) ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 13 Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com PHƯƠNG TRÌNH ĐẲNG CẤP Bài 7: Cho phương trình: 2sin2x + (m – 2)sin2x +3mcos2x = 1 (1) π π 4 4 Tìm m để (1) có nghiệm x  (- ; ) PHƯƠNG TRÌNH ĐỐI XỨNG Bài 8: Cho phương trình: 2(m...  [0; ST&BS: Cao Văn Tú 2π ] 3 Chuyên đề: Phương trình lượng giác 12 Email: caotua5lg3@gmail.com  π 3 2 Blog: www.caotu28.blogspot.com b) Tìm m để (1) có đúng 3 nghiệm x  [- ; ] Bài 2: a) Tìm m để phương trình sau có nghiệm: cos2x + 2mcosx – 4m +1 = 0 b) Tìm m để phương trình sau có nghiệm x  [- 3 π ; ]: 4 6 cos2x + 2(1 + m)sinx – 3 – 2m = 0 π 2 c) Tìm m để phương trình sau có 2 nghiệm phân biệt... Giải phương trình: a) sin2003x + cos2004x = 1 b) 5cos2x + 1 = sin27x c) sin8x + cos8x = 2(sin10x + cos10x) + 2008 d) sin 5 cos2x 4 sin 6 x  cos6 x x= 3cos4 x  cos2 x  cos 2x 2004 x + cos V PHƯƠNG PHÁP TỔNG BÌNH PHƯƠNGPhương pháp: - Sử dụng các hằng đẳng thức (a  b)2, (a  b c)2 A  0  để đưa phương trình về dạng: A2 + B2 + C2 = 0  B  0 C  0  ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng. .. Đặt t = (x + a)(x + b) Blog: www.caotu28.blogspot.com Dạng 4: Phương trình bậc bốn đối xứng ax4 + bx3  cx2 + bx + a = 0 Ta chia hai vế phương trình cho x2 (x  0), đặt t = x  1 x VD: Giải các phương trình: a) (sin2x + 3)4 + cos8x = b) 9sin 2 1201 8  9cos x  6 2 x c) tg2x – 2tgx + sin2x = 0 IV PHƯƠNG PHÁP ĐỐI LẬP  Phương pháp: Giải phương trình f(x) = g(x): - Ta đi chứng minh MGT của f(x) và g(x)... đoạn [0; 14] nghiệm đúng phương trình: cos3x – 4cos2x + 3cosx – 4 = 0 (KD – 2002) Bài 2: Tìm nghiệm thuộc khoảng (0; 2) của phương trình: 5(sinx + cos3x  sin 3x ) = cos2x + 3 1  2sin 2x (KA – 2002) Bài 3: Giải phương trình: ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 14 Email: caotua5lg3@gmail.com 1) sin23x – cos24x = sin25x – cos26x x 2  4 2) sin (  )tg x  cos 2 2 3) cotgx – tgx + 4sin2x... TẬP LÀM THÊM: DẠNG 1: PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN Bài 1: Giải các phương trình lượng giác sau: 3     2) cos  2x    sin   x   0 4   2    1) 2sin  x    3  0 5  3) sin  2 x  500   cos  x+1200   0 4) cos3x  sin4x = 0        5)  2cos  2 x    3  sin  x    1  0 3 5       6) sinx(3sinx +4) = 0  Bài 2: Giải các phương trình sau:  1) cot ...  27) cos3 4x  cos3xcos3x  sin3 xsin3x DẠNG 3: PHƯƠNG TRÌNH BẬC NHẤT THEO SIN VÀ COS Bài 1: Giải các phương trình lượng giác sau: 1) 3sin x  cos x  2  0     2) 3sin x  1  4sin3 x  3cos3x 3) sin 4 x  cos4  x    1 4  4) 2 cos4 x  sin4 x  3sin4x  2 5) 2sin2x  2sin4x  0 6) 3sin 2 x  2cos2 x  3 Bài 2: Giải các phương trình lượng giác sau: 1) 3 cosx  sinx  2 3) 3sin3x  3 cos9x... = 3  sin 2x 27) 9sinx + 6cosx - 3sin2x + cos2x = 8 DẠNG 7: PHƯƠNG TRÌNH BẬC CAO * a3  b3=(a  b)(a2 ab + b2) ST&BS: Cao Văn Tú a2 + b2)(a2 - b2) * a4 - b4 = ( * a8 + b8 = ( a4 + b4)2 - 2a4b4  b6 = a2 Phương a2 lượng * a6 Chuyên( đề:  b2)( a4 trìnhb2 + b4 )giác 20 Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com Giải các phương trình sau: x 2 x 2 1) sin4 +cos4 =1-2sinx 3 2) cos3x-sin3x=cos2x-sin2x... x)cos(  x)) 8 8 8 3 3 DẠNG 2: PHƯƠNG TRÌNH BẬC NHẤT – BẬC HAI Bài 1: Giải các phương trình sau: 1) 2cosx - 2 = 0 2) 3 tanx – 3 = 0 Bài 2: Giải các phương trình sau: 1) 2cos2x – 3cosx + 1 = 0 3) 3cot2x + 3 =0 2) cos2x + sinx + 1 = 0 4) 2 sin3x – 1 = 0 3) 2cos2x + 2 cosx – 2 = 0 4) cos2x – 5sinx + 6 = 0 5) cos2x + 3cosx + 4 = 0 6) 4cos2x - 4 3 cosx + 3 = 0 Bài 3 Giải các phương trình: 1) 2sin2x - cos2x -... 3) 5sinx(sinx - 1) - cos2x = 3 4) cos2x + sin2x + 2cosx + 1 = 0 Bài 4 Giải các phương trình: 2cos2x - 4cosx =1  1)    sinx  0 1-5sinx + 2cosx = 0  4)    cosx  0 ST&BS: Cao Văn Tú 2) 4sin3x + 3 2 sin2x = 8sinx 3) 4cosx.cos2x + 1 = 0 5) sin3x + 2cos2x - 2 = 0 6) tanx + 3 -2=0 cotx Chuyên đề: Phương trình lượng giác 17 Email: caotua5lg3@gmail.com Blog: www.caotu28.blogspot.com 4 + tanx = 7 . Văn Tú Chuyên đề: Phương trình lượng giác 1 CHUYÊN ĐỀ: PHƯƠNG TRÌNH LƯỢNG GIÁC A. TÓM TẮT LÝ THUYẾT I. CÁC CÔNG THỨC LƯỢNG GIÁC CẦN NẮM 1. Hệ thức cơ bản giữa các ham số lượng giác: . ST&BS: Cao Văn Tú Chuyên đề: Phương trình lượng giác 7  sinx.cosx = 2 t1 2  : Phương trình trở thành: bt 2 + 2.a.t +2c – b = 0 Nếu phương trình có nghiệm t 0 , ta giải phương trình: 2cos(x. Chuyên đề: Phương trình lượng giác 14 PHƯƠNG TRÌNH ĐẲNG CẤP Bài 7: Cho phương trình: 2sin 2 x + (m – 2)sin2x +3mcos 2 x = 1 (1) Tìm m để (1) có nghiệm x  ππ (- ; ) 44 PHƯƠNG TRÌNH

Ngày đăng: 19/04/2014, 13:17

TỪ KHÓA LIÊN QUAN

w