Bµi tËp 1: Cho tø gi¸c låi ABCD cã tæng hai ®êng chÐo b»ng d. Chøng minh r»ng: S 8 2 d ≤ ( S: diÖn tÝch tø gi¸c) ACOB. 2 1 ≤ Ta cã: S (ABC) ACOD. 2 1 ≤ S = S (ABC) + S (ADC) ACOBOD ).( 2 1 +≤ ⇒ BDACS . 2 1 ≤ ( ) 44 . 2 2 dBDAC BDAC = + ≤ 8 2 d S ≤ = ⊥ BDAC BDAC Mµ (C«si) ⇒ §¼ng thøc x¶y ra khi A O B C D Bµi tËp 3 !" #$%&'!()*+! ,!-. /0 123 14/ 5 ≥ 25 & 6 & 6 & 6 & 1&/ 5#-7$ #8/ #$%2 19&3:661;</ / !1 6 C¸ch 1: =>?@A&!BC#6 ! 9& ( ) ( ) 2 . 4 1 . 2 1 . 2 1 CDABBDDCABBD ++≤+≤ 19& !@DE-#DFGHD!I?@AJ E-K#A3L!#%H 16/ M#661;< ⇒ 161N A D B C O C¸ch 2 !1 6 ( ) ( ) DCABBDDCBDBDAB +=+≤ . 2 1 2 1 M#661;< ⇒ 61;<O ⇒ S ( ) BDBD −≤ 16. 2 1 !D9& ( ) BDBD −≤ 16. 2 1 ⇔ & O;<6<2 ≤ 0 Híng dÉn vÒ nhµ