Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào sau đây có giới hạn là 0? A ( − 5 3 )n B ([.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy !n số sau có giới !n hạn 0? A − B 3 !n C e !n D Câu Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) B lim un = c (un = c số) D lim = n Câu Khi tăng ba kích thước khối hộp chữ nhật lên n lần thể thích tăng lên A n3 lần B n lần C 3n3 lần D n2 lần Câu [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ mơđun z √ √ √ √ 13 B 13 C D A 26 13 Câu Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D F(x) = G(x) khoảng (a; b) Câu [2] Tổng nghiệm phương trình x −3x+8 = 92x−1 A B C D Câu [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ơng muốn hồn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ơng A hồn nợ 100.1, 03 (1, 01)3 A m = triệu B m = triệu (1, 01)3 − 120.(1, 12)3 100.(1, 01)3 C m = triệu D m = triệu (1, 12)3 − Câu Khối đa diện loại {3; 5} có tên gọi gì? A Khối 12 mặt B Khối tứ diện C Khối bát diện D Khối 20 mặt Câu 10 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A 2e + B 2e C D e Trang 1/4 Mã đề Câu 11 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất khơng thay đổi? A 18 tháng B 16 tháng C 15 tháng D 17 tháng Câu 12 Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt √ S ABCD √ phẳng vng góc với (ABCD) Thể tích khối chóp √ a3 a a3 B C a3 D A Câu 13 [1] Hàm số đồng√biến khoảng (0; +∞)? A y = loga x a = − B y = log 14 x C y = log √2 x D y = log π4 x Câu 14 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Chỉ có (II) Câu 15 [2] Tổng nghiệm phương trình log4 (3.2 x − 1) = x − A B C D Cả hai D Câu 16 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 14 B ln C ln 10 D ln 12 x+2 đồng biến khoảng Câu 17 Có giá trị nguyên tham số m để hàm số y = x + 5m (−∞; −10)? A B Vô số C D Câu 18 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 32π B 16π C V = 4π D 8π Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ Câu 20 [1-c] Giá trị biểu thức log2 36 − log2 144 A −2 B C −4 D log 2x Câu 21 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x 0 A y0 = B y = C y = D y = 2x3 ln 10 2x3 ln 10 x3 x3 ln 10 Câu 22 [2-1223d] Tổng nghiệm phương trình log3 (7 − x ) = − x A B C D Câu 23 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ 2n − Câu 24 Tính lim 3n + n4 A B C D Trang 2/4 Mã đề Câu 25 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 3 A B a C D Câu 26 Phần thực phần ảo số phức z = −i + A Phần thực 4, phần ảo −1 B Phần thực −1, phần ảo −4 C Phần thực −1, phần ảo D Phần thực 4, phần ảo Câu 27 [2-c] Giá trị lớn M giá trị nhỏ m hàm số y = x2 − ln x [e−1 ; e] A M = e−2 − 2; m = B M = e−2 + 1; m = C M = e−2 + 2; m = D M = e2 − 2; m = e−2 + Câu 28 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ Thể tích khối chóp S 3.ABC √ √ √ a a3 a3 a B C D A 12 12 Câu 29 [2] Tổng nghiệm phương trình x−1 x = 8.4 x−2 A − log2 B − log3 C − log2 D − log2 √ Câu 30 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 3a a 38 B C D A 29 29 29 29 Câu 31 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A D B C a Câu 32 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a BC Khi thể tích khối lăng trụ √ √ √ √ a3 a3 a3 a3 A B C D 36 24 12 Câu 33 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x)g(x)] = ab x→+∞ C lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ f (x) a = g(x) b D lim [ f (x) − g(x)] = a − b B lim x→+∞ x→+∞ Câu 34 [4-1121h] Cho hình chóp S ABCD đáy ABCD hình vng, biết AB = a, ∠S AD = 90◦ tam giác S AB tam giác Gọi Dt đường thẳng qua D song song với S C Gọi I giao điểm Dt mặt phẳng (S AB) Thiết diện √mặt phẳng (AIC) có diện √tích √ hình chóp S ABCD với 2 2 11a a a a A B C D 32 16 d = 60◦ Đường chéo Câu 35 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vng A, AC = a, ACB BC mặt bên (BCC B0 ) tạo với mặt phẳng (AA0C 0C) góc 30◦ Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 4a3 2a3 a3 A a B C D 3 Trang 3/4 Mã đề Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C A √ D √ a +b a2 + b2 a2 + b2 a2 + b2 mx − Câu 37 Tìm m để hàm số y = đạt giá trị lớn [−2; 6] x+m A 45 B 26 C 67 D 34 Câu 38 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A −3 B C −6 D Câu 39 [1] Phương trình log3 (1 − x) = có nghiệm A x = −5 B x = −2 C x = D x = −8 Câu 40 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 41 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 B C D A 12 12 Câu 42 √ Tính thể tích khối lập phương biết tổng diện tích tất mặt 18 B C D 27 A 3 √ Câu 43 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 A 2; ;3 B C (1; 2) D [3; 4) 2 π Câu 44 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu √ thức T = a + b √ A T = B T = C T = 3 + D T = Câu 45 Hàm số y = x + có giá trị cực đại x A B C −1 D −2 Câu 46 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D (I) (II) Câu 47 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp ba thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp lần C Tăng gấp 27 lần D Tăng gấp 18 lần Câu 48 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất khơng đổi người không rút tiền ra? A 10 năm B 11 năm C 13 năm D 12 năm Trang 4/4 Mã đề Câu 49 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 50 Trong khơng gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh! AC, AB Tọa độ hình chiếu ! ! A lên BC A ; 0; B ; 0; C ; 0; D (2; 0; 0) 3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B C A D A A 11 D 15 C 12 A 14 C C 16 A B 17 B 10 B 13 C 19 C 20 A B 21 D 22 C 23 D 24 C 25 D 26 A 27 A 28 C 29 30 C 31 B 33 B D 32 34 B 35 A D 36 38 A 40 D B 42 A 37 D 39 D 41 D 43 B 44 D 45 46 D 47 C 48 D 49 C 50 A D ... ; 0; D (2; 0; 0) 3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B C A D A A 11 D 15 C 12 A 14 C C 16 A B 17 B 10 B 13 C 19 C 20 A B 21... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B Cả ba mệnh đề C (II) (III) D... a3 a3 a3 A B C D 36 24 12 Câu 33 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x)g(x)] = ab x→+∞ C lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ f (x) a