1 LỜI CÁM ƠN Trong quá trình làm luận văn, tôi đã nhận được sự giúp đỡ rất nhiệt tình từ Thầy hướng dẫn Đặng Đức Trọng, Thầy đã nhận xét cũng như góp ý cho tôi rất nhiều để tôi có thể hoàn thành tốt đ[.]
LỜI CÁM ƠN Trong q trình làm luận văn, tơi nhận giúp đỡ nhiệt tình từ Thầy hướng dẫn Đặng Đức Trọng, Thầy nhận xét góp ý cho tơi nhiều để tơi hồn thành tốt đề tài luận văn Tơi xin chân thành cảm ơn Thầy tơi xin cảm ơn ban quản lý thư viện nhà trường, số thầy cô khoa tạo điều kiện thuận lợi cho việc mượn tài liệu tham khảo Cuối cùng, xin cảm ơn gia đình bạn bè ln động viên suốt thời gian qua Do thời gian có hạn trình độ thân cịn nhiều hạn chế, luận văn chắn khó tránh khỏi thiếu sót Tác giả mong nhận ý kiến đóng góp thầy bạn học viên Thành phố Hồ Chí Minh, ngày 30 tháng năm 2013 Học viên thực Nguyễn Thị Hồng Nhi MỤC LỤC LỜI CÁM ƠN MỤC LỤC DANH MỤC CÁC KÝ HIỆU MỞ ĐẦU CHƯƠNG KIẾN THỨC CHUẨN BỊ 1.1 Một số kiến thức không gian hàm 1.1.1 Không gian Lp, ≤ p ≤ ∞ 1.1.2 Không gian Sobolev 1.2 Một số bất đẳng thức quan trọng 11 1.2.1 Bất đẳng thức Holder 11 1.2.2 Bất đẳng thức Gronwall 12 1.3 Biến đổi Fourier 13 1.4 Nguyên lý ánh xạ co Banach 18 CHƯƠNG 2: BÀI TỐN NHIỆT NGƯỢC THỜI GIAN PHI TUYẾN CĨ CHỨA ĐẠO HÀM CẤP MỘT 21 2.1 Định nghĩa 21 2.2 Biến đổi Fourier toán (2.1) 21 2.3 Tính khơng chỉnh tốn (2.2) 22 2.4 Chỉnh hóa tốn (2.2) 23 2.4.1 Các kết 24 2.4.2 Tính chỉnh toán ( P ) 26 ϕ 2.4.3 Sự chỉnh hóa ước lượng sai số 32 CHƯƠNG 3: BÀI TOÁN NHIỆT NGƯỢC THỜI GIAN PHI TUYẾN CÓ CHỨA ĐẠO HÀM CẤP MỘT VỚI BIẾN KHÔNG GIAN HAI CHIỀU 40 3.1 Định nghĩa 40 3.2 Biến đổi Fourier toán (3.1) 40 3.3 Tính khơng chỉnh toán (3.2) 42 3.4 Chỉnh hóa tốn (3.2) 43 3.4.1 Các kết 44 3.4.2 Tính chỉnh tốn ( P ) 47 ' ϕ 3.4.3 Sự chỉnh hóa ước lượng sai số 53 KẾT LUẬN 61 TÀI LIỆU THAM KHẢO 62 DANH MỤC CÁC KÝ HIỆU x Biến không gian t Biến thời gian RN Không gian Euclide N chiều u Hàm nhiệt hàm tổng quát ut Đạo hàm cấp u theo biến t ux Đạo hàm cấp u theo biến x u xx Đạo hàm cấp u theo biến x f Môđun f χ Aε ( p ) Hàm đặc trưng tập Aε H m (Ω) Không gian Sobolev cấp m Ω C ([ 0, T ] ; X ) {u : [0, T ] → X Chuẩn H ( R ) Chuẩn L2 ( R ) } đo được, liên tục theo t max t u ( t ) < ∞ ( ) |||.||| Chuẩn C [ 0, T ] ; H ( R ) Kết thúc chứng minh MỞ ĐẦU Bài toán ngược hướng nghiên cứu phát triển cách mạnh mẽ nhiều năm gần đây, với ứng dụng rộng rãi nhiều lĩnh vực khác như: Vật lý, Hệ đồng nhất, Trắc địa…Đặc trưng phổ biến tốn tính khơng chỉnh mà đặc biệt tính khơng ổn định nghiệm Ở đây, tính khơng chỉnh tốn hiểu theo nghĩa Hadamard, tức có ba trường hợp sau xảy ra: Nghiệm không tồn Nghiệm (nếu tồn tại) không Nghiệm không ổn định (tức nghiệm không phụ thuộc liên tục vào liệu) Chính đặc điểm mà nhà khoa học phải tập trung tìm phương pháp để chỉnh hóa nó, nghĩa tìm nghiệm xấp xỉ phụ thuộc liên tục vào liệu để ứng dụng tính số tốn cụ thể Trong khoảng 40 năm gần đây, có nhiều tác giả nghiên cứu toán nhiệt ngược thời gian tuyến tính Các tác giả Lattes-Lions [11], Miller [12], Đặng Đức Trọng Nguyễn Huy Tuấn [17] nghiên cứu phương pháp chỉnh hóa gọi phương pháp tựa khả nghịch cách làm nhiễu phương trình Các tác giả Clark Oppenheiner [8] đưa phương pháp chỉnh hóa khác cách làm nhiễu giá trị cuối (phương pháp giá trị tựa biên) Gần đây, toán nghiên cứu nhiều tài liệu Sau năm 2000, ta tìm thấy vài báo liên quan đến toán nhiệt ngược thời gian phi tuyến Trong tài liệu [6, 7], tác giả đưa kết tính ổn định cấu trúc cho phương trình Ginzburg-Landau Các tác giả Phạm Hoàng Quân Nguyễn Dũng, tài liệu [13], nghiên cứu phương pháp chỉnh hóa cách biến đổi toán thành toán cực tiểu phiếm hàm thích hợp Trong tài liệu [14], tác giả sử dụng biến đổi Fourier để có phương trình tích phân khơng gian tần số Bằng cách gây nhiễu trực tiếp phương trình tích phân, họ xây dựng phương pháp chỉnh hóa Trong tài liệu [16], tác giả kết hợp hai phương pháp tựa khả nghịch tựa giá trị biên để chỉnh hóa tốn Và gần đây, tài liệu [19], tác giả sử dụng phương pháp cắt ngắn chuỗi Fourier để chỉnh hóa tốn, phương pháp chỉnh hóa hiệu Tuy nhiên, tài liệu đề cập đến việc chỉnh hóa tốn nhiệt ngược thời gian phi tuyến có chứa đạo hàm cấp Bởi vậy, mạnh dạn chọn đề tài “Chỉnh hóa tốn truyền nhiệt ngược với nguồn phi tuyến” với mục đích trình bày chỉnh hóa tốn cách tốt Trong luận văn, tham khảo chi tiết báo “Regularization of a backward heat transfer problem with a nonlinear source”, xem [20] Ý tưởng báo từ điều kiện cuối u ( x, T ) , ta xét toán tìm hàm u thỏa = ut − u xx f ( x, t , u ( x, t ) , u x ( x, t ) ) , ( x, t ) ∈ R × ( 0, T ) Bài tốn khơng chỉnh ta dùng biến đổi Fourier để phương trình tích phân không gian tần số Bằng việc cắt ngắn tần số cao ta cho nghiệm chỉnh hóa Các ước lượng sai số cho trước Về bố cục, phần mở đầu kết luận, luận văn gồm chương với nội dung tóm tắt sau: • Chương Kiến thức chuẩn bị Chương trình bày kiến thức chuẩn bị cần thiết sử dụng chương luận văn Các kiến thức nhắc tới bao gồm: Một số kiến thức không gian hàm Một số bất đẳng thức quan trọng Biến đổi Fourier Nguyên lý ánh xạ co Banach • Chương Bài toán nhiệt ngược thời gian phi tuyến có chứa đạo hàm cấp Chương chương luận văn Dựa vào nội dung báo, luận văn trình bày phân tích nội dung cách chi tiết rõ ràng vấn đề sau: Định nghĩa tốn nhiệt ngược thời gian phi tuyến có chứa đạo hàm cấp (bài toán (2.1)) Cho T số dương, ta xét tốn tìm nghiệm u ( x, t ) , ( x, t ) ∈ R × [0, T ] , thỏa hệ ut − u xx f ( x, t , u ( x, t ) , u x ( x, t ) ) , = u ( x, T ) = ϕ ( x ) , ( x, t ) ∈ R × ( 0, T ) ϕ ( x ) , f ( x, t , y, z ) hàm cho trước Bài toán gọi tốn nhiệt ngược thời gian phi tuyến có chứa đạo hàm cấp Biến đổi Fourier toán (2.1) Bằng cách sử dụng biến đổi Fourier, ta đưa toán (2.1) toán (2.2) sau: T T −t p s −t p = u ( p, t ) e( ) ϕ ( p ) − ∫ e( ) F u ,u x ( p , s ) ds , t g ( p, t ) = 2π ∫ +∞ −∞ g (ξ , t ) e − ipξ dξ , Fu ,v ( x, t ) := f ( x, t , u ( x, t ) , v ( x, t ) ) Chứng minh tính khơng chỉnh tốn (2.2) Ở toán (2.2), ta ý nhân tử xấu e( Vì e( s −t ) p T −t ) p , e( s −t ) p , 0