1. Trang chủ
  2. » Kinh Tế - Quản Lý

bài giảng giá trị thời gian của tiền tệ - đh ngoại thương

41 2,1K 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 375,38 KB

Nội dung

GIÁ TRỊ THỜI GIAN CỦA TIỀN TỆ TIME VALUE OF MONEY TIME VALUE OF MONEY Nội dung 1. Giá trị hiện tại (Present Value) 2. Giá trị tương lai (Future Value) 3. Giá trị tương lai của dòng tiền đều-FVA 4. Giá trị hiện tại của dòng tiền trong tương lai 4. Giá trị hiện tại của dòng tiền trong tương lai PVP PVA Giá trị thời gian của tiền tệ • Nguyên lý cơ bản: Một đồng hiện tại có giá trị hơn so với một đồng trong tương lai • Nguyên nhân: Tiết kiệm hoặc đầu tư Tiết kiệm hoặc đầu tư Trì hoãn tiêu dùng 1. Giá trị tương lai của tiền tệ (Future value) + Lãi suất đơn và lãi suất gộp + Giá trị tương lai của tiền tệ + Giá trị tương lai của tiền tệ Giá trị tương lai của tiền tệ Lãi suất đơn Lãi suất đơn là lãi suất chỉ tính trên khoản đầu tư ban đầu (Simple interest rate) Lãi suất gộp Lãi suất gộp Lãi suất gộp là lãi suất được tính trên lãi suất (Compound interest rate) => Lãi suất gộp thường được sử dụng trong những vấn đề tài chính Lãi suất đơn (Simple int. rate) Công thức tổng quát: Một nhà đầu tư có $100 gửi ngân hàng Với lãi suất đơn là 6%: Sau năm thứ nhất anh ta sẽ thu được (1 ) F V P V r t = + Sau năm thứ nhất anh ta sẽ thu được $100 x (1+0.06) = $ 106 Sau năm thứ hai anh ta sẽ thu được $106 + 100x0.06 = $ 112 Sau năm thứ ba anh ta sẽ thu được $112 + 100x0.06 = $ 118 Lãi suất gộp (Compound interest rate) Công thức tổng quát: Cũng với ví dụ trên, với lãi suất gộp 6%: (1 ) t FV PV r = + Giá trị tương lai (Future value) • Định nghĩa: là khoản tiền mà nhà đầu tư thu được tính theo lãi suất gộp đối với khoản đầu tư ban đầu. Ví dụ: Ví dụ: • Một nhà đầu tư có $100. Nếu anh ta gửi ngân hàng với lãi suất gộp 6%/năm thì cuối năm thứ năm anh ta sẽ có bao nhiêu tiền trong tài khoản? Công thức tính: FV=$100(1+r) t Giá trị tương lai Nhận xét: Giá trị tương lai tính theo lãi suất gộp Giá trị tương lai tính theo lãi suất gộp Giả định lãi suất không đổi qua từng thời kỳ Giá trị tương lai phụ thuộc nhiều vào lãi suất Giá trị tương lai Future value of $1 (1+r) t [...]... 8%? Giá trị tương lai của dòng tiền (Future value of multiple cash flows) Giá trị tương lai của dòng tiền đều (FVA-Future Value of Annuities) M t sinh viên quy t đ nh đ dành ti n mua nhà Sau m i năm sinh viên đó ti t ki m đư c $3000 N u lãi su t ti t ki m là 8% thì sau 4 năm sinh viên đó s có bao nhiêu ti n? Giá trị tương lai của dòng tiền đều (FVA-Future Value of Annuities) Giá trị tương lai của dòng... tính giá c a ch ng khoán này Giá trị hiện tại của một dòng tiền đều vô hạn trong tương lai (PVP- Present Value of Perpetuities) Giá c a ch ng khoán trên đư c tính b ng t ng giá tr hi n t i c a thu nh p hàng năm trong tương lai (C) C C C PV 0 = + + + + 2 n 1 + r (1 + r ) (1 + r ) Sau khi rút g n: C PV = r Đây là công th c tính giá tr hi n t i c a dòng ti n đ u vô h n Giá trị hiện tại của dòng tiền. .. đều (PVA-Present value of annuities) Giá trị hiện tại của dòng tiền đều (Present value of future cash flows) Bài t p: M t ngư i trúng x s s nh n đư c $10,000 m i năm trong 3 năm và l n nh n đư c ti n đ u tiên là sau 1 năm H i giá tr hi n t i c a dòng ti n mà công ty x s ph i tr , bi t lãi su t chi t kh u là 7%? Giá trị tương lai của dòng tiền (Future value of multiple cash flows) • Đ nh nghĩa: Giá tr... tương lai c a dòng lưu chuy n ti n t b ng t ng giá tr tương lai c a các kho n thu nh p thành ph n • Dòng ti n: L i t c trái phi u C t c Giá trị hiện tại của dòng tiền đều (PVA-Present value of annuities) • Giá tr hi n t i c a m t dòng ti n đ u có đư c sau t năm (Present Value of t-year Annuity) 1 1 PV At = C ( − ) t r r (1 + r ) 4 Giá trị tương lai của dòng tiền (Future value of multiple cash flows) M... n t $4,000? (Gi đ nh lãi su t chi t kh u là 8% m i năm) Giá trị hiện tại của dòng tiền (Present value of future cash flows) Đ so sánh giá c c a hai phương th c trên c n qui đ i giá tr góp v giá tr hi n t i V y v i gi đ nh lãi su t hàng năm là 8% thì b n nên ch n cách mua tr góp Giá trị hiện tại của một dòng tiền đều vô hạn trong tương lai (PVP- Present Value of Perpetuities) Chính ph phát hành m t... = FV × t (1 + r ) (1 + r ) t Giá trị hiện tại của tiền tệ (Present value) Giá trị hiện tại Present value of $1 1/(1+r)t Giá trị hiện tại Ví d : Năm 1995, công ty Pearl c n vay m t kho n 1 t USD trong 25 năm Đ vay kho n ti n này, công ty đã phát hành các ch ng ch n Các ch ng ch này cho phép ngư i c m gi nh n đư c $1000 sau 25 năm N u là b n, b n s mua ch ng ch n này v i giá bao nhiêu n u bi t lãi su.. .Giá trị tương lai Năm 1626, Adam mua hòn đ o Manhattan v i giá $24 V y giá tr c a hòn đ o này năm 2005 là bao nhiêu n u gi đ nh lãi su t hàng năm là 8%? Sau 379 năm (200 5-1 626), giá tr c a hòn đ o là: $24x(1+0.08)379= $111,638,000,000,000 Theo bi u giá trên th trư ng b t đ ng s n NewYork thì giá hòn đ o Manhattan ch là m t ph n nh c a kho n ti n này Giá trị tương lai Chú ý: Lãi... 8% là m t lãi su t khá cao N u lãi su t ch là 4% thì giá tr tương lai ch còn $24x(1+0.04)379=$ 68,525,000 Không đ c p đ n kho n thu nh p t vi c cho thuê đ t trong g n 4 th k 2 Giá trị hiện tại của tiền tệ (Present value) • Nguyên lý cơ b n: M t đ ng ti n hi n t i có giá tr hơn m t đ ng ti n trong tương lai • Giá tr hi n t i đư c tính ngư c so v i giá tr tương lai • Công th c t ng quát: Thừa số chiết... sau t năm s ti n đó s tăng lên: $100(1+0.09)t=$200 t=8 Giá trị hiện tại Qui t c 72 (Rule of 72): Đ i v i m i lãi su t yêu c u h p lý r% (5%20%), n u mu n thu đư c m t kho n ti n g p đôi s ti n đ u tư ban đ u trong tương lai thì ph i m t m t kho n th i gian là 72/r 3 Giá trị hiện tại của dòng tiền (Present value of future cash flows) • Đ nh nghĩa: Giá tr hi n t i c a dòng ti n trong tương lai là kho n... trên th trư ng là 8.53%? Giá trị hiện tại Tr l i: Giá mua ch ng ch n này là giá tr hi n t i c a kho n $1000 sau 25 năm PV=$1000/(1+0.0853)25=$129 Giá trị hiện tại Ví d : M t nhà đ u tư có kho n đ u tư ban đ u là $100 H i a) V i lãi su t là bao nhiêu thì kho n ti n này s tăng g p đôi sau 8 năm? b) V i lãi su t là 9%/năm thì sau bao nhiêu năm kho n ti n này s tăng g p đôi? Giá trị hiện tại Tr l i: a) . tiêu dùng 1. Giá trị tương lai của tiền tệ (Future value) + Lãi suất đơn và lãi suất gộp + Giá trị tương lai của tiền tệ + Giá trị tương lai của tiền tệ Giá trị tương lai của tiền tệ Lãi suất. đều-FVA 4. Giá trị hiện tại của dòng tiền trong tương lai 4. Giá trị hiện tại của dòng tiền trong tương lai PVP PVA Giá trị thời gian của tiền tệ • Nguyên lý cơ bản: Một đồng hiện tại có giá trị. GIÁ TRỊ THỜI GIAN CỦA TIỀN TỆ TIME VALUE OF MONEY TIME VALUE OF MONEY Nội dung 1. Giá trị hiện tại (Present Value) 2. Giá trị tương lai (Future Value) 3. Giá trị tương lai của dòng tiền

Ngày đăng: 30/03/2014, 00:39

TỪ KHÓA LIÊN QUAN