1. Trang chủ
  2. » Tất cả

De thi hoc ki 1 nam 2016 2017 truong thpt thu duc tp hcm ma 1207

20 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 414,15 KB

Nội dung

TRƯỜNG THPT THỦ ĐỨC Năm học 2016 – 2017 ĐỀ ÔN TẬP HK1 Môn TOÁN – LỚP 12 Thời gian 90 phút MÃ ĐỀ 1207 Câu 1 Trong các mệnh đề sau, mệnh đề nào sai? A Hình tạo bởi hai tứ diện đều ghép với nhau là một h[.]

TRƯỜNG THPT THỦ ĐỨC ĐỀ ÔN TẬP HK1 Năm học 2016 – 2017 Mơn: TỐN – LỚP 12 MÃ ĐỀ 1207 Thời gian: 90 phút Câu 1: Trong mệnh đề sau, mệnh đề sai? A Hình tạo hai tứ diện ghép với hình đa diện lồi B Hình hộp đa diện lồi C Hình lập phương đa diện lồi D Tứ diện đa diện lồi Câu 2: Cho hàm số y = f ( x ) có lim f ( x ) = lim+ f ( x ) = − Khi đồ thị hàm số có: x →+ x →1 A Tiệm cận đứng x = tiệm cận ngang y = B Tiệm cận ngang y = tiệm cận đứng x = C Tiệm cận ngang x = tiệm cận đứng y = D Trục đối xứng x = Câu 3: Hàm số sau có ba điểm cực trị? A y = x5 − x + B y = − x + 3x + C y = − x − 3x + D y = x Câu 4: Đạo hàm cấp hai hàm số y = e2 x x = A B C D Câu 5: Đường thẳng d qua A (1; −2 ) tiếp xúc với đồ thị hàm số y = x − x có hệ số góc A C hay −2 B D Câu 6: Cho hình lập phương ABCD.A ' B ' C ' D ' cạnh a Diện tích xung quanh hình nón trịn xoay có đỉnh tâm O hình vng ABCD đáy hình trịn nội tiếp hình vng A ' B ' C ' D ' bằng: A  a2 B a2 Câu 7: Số điểm đồ thị hàm số f ( x ) = A C  a2 D  a2 3x − có tọa độ nguyên x +1 B C D Câu 8: Đồ thị hàm số sau khơng có tâm đối xứng? x2 − 2x A y = x −1 B y = x + x − C y = x3 + 3x − D y = x x Câu 9: Số nghiệm nguyên bất phương trình log 0,2 ( x − 1)  −1 A B C D Câu 10: Giá trị lớn hàm số f ( x ) = − x + x + là: A −1 B C D Câu 11: Tổng giá trị cực trị hàm số f ( x ) = A x − 3x + là: x −1 D −15 C −2 B Câu 12: Số giao điểm đồ thị hàm số y = x3 + x + với trục hoành A B Câu 13: Đơn giản biểu thức a −2 C    − −1  a  +1 ta kết là: B a −1 A a Câu 14: Để hàm số y = D C a −3 D a mx + nghịch biến khoảng xác định giá trị thích hợp x+m m A m  B m  C m  D m  Câu 15: Hãy chọn cụm từ (hoặc từ) cho để điền vào chỗ trống, mệnh đề sau trở thành mệnh đề đúng: “Số cạnh hình đa diện ln _ số mặt hình đa diện ấy” A Nhỏ B Lớn C Nhỏ D Bằng Câu 16: Cho Parabol y = x − x + Nếu đường thẳng d tiếp xúc với ( P ) điểm có hồnh độ d: A d song song với trục hồnh B d vng góc với đường thẳng y = x + C d song song với đường thẳng y = x − D d qua A (1;1) Câu 17: Gọi ( x0 ; y0 )  1 log ( y − x ) − log   = nghiệm hệ phương trình  x0 + y0 bằng:  y  2  x + y = 25 A 12 C −1 B D Câu 18: Hàm số f có đạo hàm f ' ( x ) = x ( x + 1) ( x − 1) Số điểm cực trị hàm số f là: A B C D Câu 19: Hàm số f ( x ) = tan x + x A Đồng biến khoảng xác định B Nghịch biến C Đồng biến D Nghịch biến khoảng xác định Câu 20: Đối với hàm số f ( x ) = ecos x Ta có:   A f '   = − 3e 6   B f '   = −e 6   C f '   = e 6   D f '   = 3e 6 C y = ( x + 1) e x D y = ( x + 1) e x Câu 21: Đạo hàm hàm số y = ( x + 1) e x là: A y = ( x + 1) e x B y = xe x Câu 22: Cho hình lập phương ABCD.A ' B ' C ' D ' cạnh a Diện tích mặt cầu qua tất đỉnh hình lập phương là: B 3 a A 3a C  a D  a Câu 23: Cho điểm A, B, C thuộc mặt cầu biết AC ⊥ CB Trong khẳng định sau, khẳng định đúng? A AB đường kính mặt cầu cho B Ln có đường trịn thuộc mặt cầu ngoại tiếp tam giác ABC C AB đường kính đường trịn lớn mặt cầu cho D ABC tam giác vuông cân C Câu 24: Cho tam giác ABC cạnh 2a Quay tam giác ABC quanh đường cao AH (H thuộc BC) ta khối nón trịn xoay tích A a3 B a 3 C 3a3 D a3 3 Câu 25: Tiếp tuyến đồ thị hàm số y = x + x − x = A Đi qua A ( 0;1) B Song song với y = x − C Có hệ số góc D Vng góc với y + x − = Câu 26: Cho ( H ) hình chóp tứ giác S.ABCD có tất cạnh 2a Gọi O giao điểm AC BD Khi khoảng cách từ O đến mặt bên ( H ) là: A a 6 B a C a D 2a Câu 27: Biết log5 x = 2log5 a − 3log5 b x bằng: B a − b A a b C 2a − 3b a2 D b Câu 28: Cho hình chóp SABCD, ABCD hình chữ nhật AB = a, AD = 2a, SA = a SA vng góc với mặt phẳng ( ABCD ) Thể tích khối cầu ngoại tiếp hình chóp SABCD A a 3 B 3a3 C 8a3 D a 3 Câu 29: Một khối trụ có bán kính đáy r có thiết diện qua trục hình vng Diện tích xung quanh khối trụ là: A  r2 B 4 r 2 C 16 r D 2 r Câu 30: Cho hình chóp S.ABC có đáy tam giác cân A cạnh bên tạo với mặt đáy góc 60° Chân đường cao hình chóp là: A Trung điểm cạnh BC B Tâm đường tròn ngoại tiếp tam giác ABC C Tâm đường tròn nội tiếp tam giác ABC D Trọng tâm tam giác ABC Câu 31: Hàm số y = e x − x − B Nghịch biến nửa khoảng ( 0; + ) A Đồng biến C Nghịch biến \ 0 D Đồng biến nửa khoảng ( 0; + ) Câu 32: Cho hình lập phương ABCD.A ' B ' C ' D ' cạnh a Diện tích xung quanh hình trụ có đường trịn hai đáy ngoại tiếp hình vuông ABCD A ' B ' C ' D ' A  a 2 B  a C  a Câu 33: Số đường tiệm cận đồ thị hàm số f ( x ) = A B D a 2 x là: x +1 C D Câu 34: Gọi M, N giao điểm hai đường cong y = x3 + 3x + y = x + Độ dài đoạn MN là: 2 A Câu 35: Hàm số f ( x ) = x + B 10 C D x A Đồng biến khoảng ( 2;3 ) B Nghịch biến khoảng ( −2; + ) C Đồng biến khoảng ( −2; ) D Nghịch biến khoảng ( −; ) Câu 36: Đồ thị hai hàm số y = x + A − x − 2; y = x + x − tiếp xúc với điểm có hồnh độ B C Câu 37: Giá trị lớn hàm số y = A −1 B D x −1 đoạn  0;1 2x +1 C D Câu 38: Cho ( H ) khối lăng trụ đứng, đáy tam giác cạnh a Đường chéo mặt bên 2a Thể tích lăng trụ là: 3a A B 3a 3 C a3 D 3a 3 Câu 39: Cho hình chóp tam giác S.ABC có tất cạnh a Khoảng cách từ A đến mặt phẳng ( SBC ) là: A a 6 B a 3 C a D 2a Câu 40: Cho hình lăng trụ tam giác ABC A ' B ' C ' có cạnh a Bán kính mặt cầu ngoại tiếp lăng trụ bằng: A a 21 B a 21 C a D a 21 12 Câu 41: Phương trình log x − log x = có nghiệm? A B C D Câu 42: Cho khối tứ diện SABC Gọi M, N trung điểm cạnh bên SA, SB Khi tỉ số thể tích hai khối đa diện S.ABC C.ABNM bằng: A B C D Câu 43: Số điểm cực trị hàm số f ( x ) = x − x − là: A B C D Câu 44: Tập nghiệm bất phương trình log 0,5 ( x − x + )  là: A ( 2;3 ) B ( −; )  ( 3; + ) C ( −; ) D ( 3; + ) Câu 45: Cho tam giác ABC cân A, AB = AC = 5a, BC = 6a Quay tam giác ABC xung quanh đường cao AH tạo nên hình nón Thể tích khối nón là: B 36 a3 A 4 a3 C 12 a3 D 12a3 Câu 46: Hàm số sau có đồ thị hình vẽ? A y = 3 B y =   2 x x 2 C y =   3 x D y = log x Câu 47: Cho hàm số f ( x ) = x + x + có đồ thị ( C ) Mệnh đề là: A Đồ thị ( C ) cắt Ox hai điểm phân biệt B Đồ thị ( C ) qua gốc tọa độ C Hàm số cực trị D Hàm số đồng biến khoảng ( −;0 ) nghịch biến khoảng ( 0; + ) 11 Câu 48: Viết biểu thức a a a a : a 16 , ( a  ) ta được: 1 15 16 A a 16 B a C a 16 D a 15 Câu 49: Hàm số f ( x ) = x − x A Nhận x = điểm cực tiểu B Đồng biến khoảng ( 0; ) C Nhận x = điểm cực đại D Nghịch biến khoảng ( 0;1) Câu 50: Cho khối chóp tam giác S.ABC có cạnh đáy AB = 6, AC = 8, BC = 10 Cạnh bên SA = vng góc với mặt phẳng đáy Bán kính mặt cầu ngoại tiếp hình chóp bằng: A 29 B 10 C 29 HẾT D 29 ĐÁP ÁN A B B C C A C B D 10 B 11 C 12 D 13 A 14 C 15 B 16 D 17 B 18 C 19 A 20 A 21 D 22 B 23 B 24 D 25 D 26 B 27 D 28 D 29 B 30 B 31 D 32 A 33 B 34 A 35 A 36 D 37 C 38 B 39 C 40 A 41 D 42 D 43 D 44 A 45 C 46 A 47 C 48 B 49 C 50 A LỜI GIẢI CHI TIẾT Câu 1: Đáp án A Câu 2: Đáp án B Câu 3: Đáp án B Vì: y ' = −4 x3 + x x = y'=   x =   Câu 4: Đáp án C y ' = 2e x , y '' = 4e x  y ''(0) = Câu 5: Đáp án C y ' = 2x − d tiếp xúc với y nên d tiếp tuyến Gọi M (a; a − 2a) tiếp điểm Phương trình d: y − a + 2a = (2a − 2)( x − a) a = d qua A nên: −2 − a + 2a = (2a − 2)(1 − a)  a − 2a =   a = Vậy hệ số góc là: -2 Câu 6: Đáp án A a a a Hình nón có bán kính đáy r = đường sinh l = a +   = 2 2 Vậy diện tích xung quanh hình nón là: S =  rl = Câu 7: Đáp án C f ( x) = − x +1 Để f(x) nguyên x + phải ước  x + 1 −5; −1;1;5 Vậy có điểm Câu 8: Đáp án B parabol có trục đối xứng Câu 9: Đáp án D Điều kiện: x  Bất phương trình tương đương với: x −1   x  Kết hợp điều kiện   x  x nguyên nên x  2;3; 4;5;6 Câu 10: Đáp án B f '( x) = −4 x + x x = f '( x) =    x = 1 f (0) = 1, f ( 1) = Vậy GTLN  a2 Câu 11: Đáp án C x −1 f '( x) = − ( x − 1) f ( x) = x − + x = f '( x) =    x = −1 f (3) = 3, f (−1) = −5 Vậy tổng giá trị cực trị -2 Câu 12: Đáp án D y ' = 3x +  0, x Hàm số bậc ba đồng biến nên cắt Ox điểm Câu 13: Đáp án A a −2    − −1  a  +1 = a −2 a 3+ 2 = a3 Câu 14: Đáp án C TXĐ: (−; −m)  (−m; +) Hàm số nghịch biến tập xác định khi: y'= m2 −  0, x  m ( x + m)  m2 −   m  Câu 15: Đáp án B Câu 16: Đáp án D y ' = 2x − y '(2) =  phương trình d là: y = 2x - Câu 17: Đáp án B Điều kiện:  x  y   1  y  log ( y − x ) − log   = − log ( y − x) + log y = log   =1 y − x      y    x + y = 25   2  x + y = 25  x + y = 25 4x   y = x =   y =  x + 16 x = 25  Vậy x0 + y0 = Câu 18: Đáp án C  x =  f '( x) =   x = −1  x =  Hàm số có điểm cực trị x = nghiệm kép nên f’(x) không đổi dấu qua Câu 19: Đáp án A   TXĐ: R \  + k  2  f '( x) = +  0, x  hàm số đồng biến khoảng xác định cos x Câu 20: Đáp án A   f '( x) = −2sin x.ecos x  f '   = − 3e 6 Câu 21: Đáp án D y ' = xe x + ( x + 1) e x = ( x + 1) e x Câu 22: Đáp án B Bán kính mặt cầu ngoại tiếp hình lập phương là:  a   a 2 a R =   +   =   2 Diện tích mặt cầu là: S = 4 R2 = 3 a Câu 23: Đáp án B Câu 24: Đáp án D A 2a B C H AH = 2a =a  a3 Thể tích khối nón là: V =  BH AH =  a a = 3 Câu 25: Đáp án D y ' = x +  hệ số góc tiếp tuyến là: y '(1) = Phương trình tiếp tuyến là: x − y − = Câu 26: Đáp án B S H A D E O B C Gọi E trung điểm CD Ta có: ( SOE ) ⊥ ( SCD)  Trong (SOE) kẻ OH ⊥ SE OH ⊥ (SCD)  OH = d (O,(SCD))  ( SOE )  ( SCD) = SE Xét tam giác SOE: 1 a = + =  OH = 2 OH SO OE 2a Câu 27: Đáp án D log x = log a − 3log b  log x = log a2 a2  x = b3 b3 Câu 28: Đáp án D S I A B D C Gọi I trung điểm SC Vì tam giác SAC vuông nên IS=IC=IA Mặt khác: BC ⊥ (SAB) nên tam giác SBC vuông B  IB=IC=IA Tương tự, ta có: ID=IS=IC Do I tâm mặt cầu ngoại tiếp mặt cầu có bán kính là: R = a SC = 2 Vậy thể tích khối cầu là: V =  R =  a Câu 29: Đáp án B A B 2r D 2r Diện tích xung quanh hình trụ là: S = 2 rl = 2 r.2r = 4 r Câu 30: Đáp án B Câu 31: Đáp án D y ' = ex −1   x  y Câu 32: Đáp án A Bán kính hình trịn ngoại tiếp hình vng là: r = Diện tích xung quanh hình trụ là: S = 2 rl = 2 Câu 33: Đáp án B Ta có: lim f ( x) = x → Vậy hàm số có tiệm cận ngang là: y = a 2 a a =  a 2 C Câu 34: Đáp án A x = Xét: x + 3x + = x +  x + x =   x = −  2 2  3  M (0;1), N  − ;   MN =  2 Câu 35: Đáp án A TXĐ: R \ 0 f '( x) = − x    x2    x  x  −2 Hàm số đồng biến (−; −2) (2; +) Nghịch biến (−2; 2) Câu 36: Đáp án D x = Xét : x + x − = x + x −  x − x + x =   x = 4   hàm số tiếp xúc điểm có hồnh độ x = Câu 37: Đáp án C y'=  0, x  −  max y = y (1) = (2 x + 1) 0;1 Câu 38: Đáp án B 2a a ( ) a = 3a3 Chiều cao lăng trụ: h = (2a)2 − a (a 3) Thể tích lăng trụ là: V = =a Câu 39: Đáp án C S H A C G M B Gọi G trọng tâm tam giác ABC, M trung điểm BC Ta có: ( SGM ) ⊥ ( SBC )  Trong (SGM) kẻ GH ⊥ SM GH ⊥ ( SBC )  GH = d (G,( SBC ))  ( SGM )  ( SBC ) = SM Mà A, G, M thẳng hàng AM=3GM nên d(A,(SBC))=3d(G,(SBC)) Xét tam giác SGM 1 27 a = + =  GH = 2 GH SG GM 2a Vậy d ( A, ( SBC )) = a Câu 40: Đáp án A C A G B I G’ Gọi I tâm mặt cầu ngoại tiếp lăng trụ I trung điểm GG’ (với G, G’ trọng tâm hai mặt đáy) 2 3 a 21 a 2 IC = IG + GC =   +  a  = 2 3  2 Câu 41: Đáp án D Điều kiện:  x  Phương trình tương đương với: + log x − log x =  log x − log x = x = 1 =  log 22 x − log x =    log x − x = log x = Vậy có nghiệm Câu 42: Đáp án D Ta có: S ABMN = V SSAM  CABS = VCABMN Câu 43: Đáp án D Ta có: y = x2 − x2 −1 y ' = 2x − 2x x2 x = y ' =   x =  x = −1 Do hàm số có điểm cực trị Câu 44: Đáp án A Bất phương trình tương đương với:  x2 − 5x +   x2 − 5x +    x  Câu 45: Đáp án C A 5a B C H 6a AH = 4a Thể tích khối nón là: V =  BH AH =  9a 4a = 12 a 3 Câu 46: Đáp án A Hàm số qua điểm (0; 1) (1; 2) Câu 47: Đáp án C f '( x) = x3 + x f '( x) =  x = Vậy hàm số có cực trị Câu 48: Đáp án B 11 16 15 16 11 16 a a a a : a = a : a = a4 Câu 49: Đáp án C 1− x f '( x) = 2x − x2 f '( x) =  x = Dấu f '( x) : x + f '( x) - Vậy hàm số nhận x = điểm cực đại Câu 50: Đáp án A S P A I N B M C Gọi M trung điểm BC ta có M tâm đường trịn ngoại tiếp tam giác ABC Gọi P trung điểm SB Gọi (Q) mặt phẳng trung trực SB Gọi I giao điểm trục đường tròn ngoại tiếp tam giác ABC (Q) Ta có I tâm mặt cầu ngồi tiếp khối chóp S.ABC Gọi N trung điểm AB Ta có: PN // IM (Cùng vng góc mặt phẳng (ABC)) Suy I, M, N, P đồng phẳng CA ⊥ SA Mặt khác:   CA ⊥ ( SAB)  NM ⊥ ( SAB)  NM ⊥ SB CA ⊥ AB Ta có: PI  (Q) mà (Q) mặt phẳng trung trực SB nên SB ⊥ PI  NM / / PI (hai đường thẳng đồng phẳng vng góc với SB) Mà IM ⊥ ( ABC )  IM ⊥ MN nên PIMN hình chữ nhật  IM = PN = Ta có: BM = SA = 2 BC = Xét tam giác MBI vuông M: IB = IM + BM = 29 ... A B B C C A C B D 10 B 11 C 12 D 13 A 14 C 15 B 16 D 17 B 18 C 19 A 20 A 21 D 22 B 23 B 24 D 25 D 26 B 27 D 28 D 29 B 30 B 31 D 32 A 33 B 34 A 35 A 36 D 37 C 38 B 39 C 40 A 41 D 42 D 43 D 44 A... AH =  9a 4a = 12  a 3 Câu 46: Đáp án A Hàm số qua điểm (0; 1) (1; 2) Câu 47: Đáp án C f ''( x) = x3 + x f ''( x) =  x = Vậy hàm số có cực trị Câu 48: Đáp án B 11 16 15 16 11 16 a a a a : a =... điều ki? ??n   x  x nguyên nên x  2;3; 4;5;6 Câu 10 : Đáp án B f ''( x) = −4 x + x x = f ''( x) =    x = ? ?1 f (0) = 1, f ( ? ?1) = Vậy GTLN  a2 Câu 11 : Đáp án C x ? ?1 f ''( x) = − ( x − 1) f

Ngày đăng: 15/02/2023, 14:54

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w