1. Trang chủ
  2. » Tất cả

Giáo trình giải tích hàm

146 9 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 146
Dung lượng 1,04 MB

Nội dung

Đại học Huế Trờng Đại học S phạm NGUYễN HOàNG Và LÊ VĂN HạP Giáo trình giải tích hàm Huế - 2014 æ `.I NOI ´ D ˆU -` LO A ´ Va `o n˘ am 1932, Banach xuˆ a´t ba’n cuˆ o´n sa ´ ch “Ly ´ thuyˆ e t toa ´n ´ `e ly `om nh˜ ´ e t qua’ d¯u o c biˆ ´ vˆ ´ tu’ ”, nˆ o.i dung bao gˆ u ng kˆ e t va `o th` o i d¯o ´ thuyˆ e t ca ´ c khˆ ong gian d¯i.nh chuˆ a’n, d¯˘ a.c biˆ e.t la ` ca ´ c d¯i.nh ly ´ cu’a Banach ˜ cˆ d¯a ong bˆ o´ ca ´ c ba `i ba ´ o t` u n˘ am 1922-1929 Cuˆ o´n sa ´ ch na `y la `m o´n sa ´ ch cu’a Van der Waerden cho Gia’i tı ´ch `m co ´ mˆ o.t ta ´ c d¯ˆ o.ng nhu cuˆ `e d¯a.i sˆ vˆ o´, d¯u.o c xuˆ a´t ba’n hai n˘ am tru.´ o.c d¯o ´ Ca ´ c nha ` gia’i tı ´ch trˆ en ´t d¯ˆ `au nhˆ ´ a a.n th´ u c d¯u o c s´ ´ p m´ o i va ` u c ma.nh cu’a phu o ng pha thˆ e gi´ o i b˘ ´ap du.ng chu ´ ng va `o ca ´ c lı˜nh vu c kha ´ c nhau; ca ´ c ky ´ hiˆ e.u va ` thuˆ a.t ng˜ u `ay d¯u’ ˜ i, khˆ cu’a Banach d¯u.o c chˆ a´p nhˆ a.n rˆ o.ng ong gian d¯i.nh chuˆ a’n d¯ˆ `oi ch˘ ´ d¯u.o c go.i la ` khˆ ong gian Banach rˆ a’ng bao lˆ au, ly ´ thuyˆ e t na `y tro’ ´t buˆ `an b˘ tha `nh mˆ o.t phˆ a o.c chu.o.ng trı`nh d¯a.i ho.c J Dieudonne ´ (1981) Gia’i tı´ch `m la` mˆo.t nga `nh cu’a gia’i tı´ch toa ´ n ho.c nghiˆen c´ u.u ca ´ c d¯oˆ´i tu.o ng ong thu.`o.ng o’ng qua ´ t ho.n ca ´ c khˆ ong gian Rn thˆ va ` cˆa´u tru ´ c toa ´ n ho.c tr` u.u tu.o ng, tˆ `eu nga ´et qua’ va ´ p cu’a no ´ thˆ am nhˆ a.p va `o nhiˆ `nh kha ´ c nhu Ca ´ c kˆ ` phu.o.ng pha ´et phu.o.ng trı`nh vi phˆ ´et ly ´ thuyˆ an thu.` o.ng, phu.o.ng trı`nh d¯a.o `m riˆeng, ly ´ thuyˆ ´en phˆ ` biˆ an, phu o ng pha ´ p tı´nh, Ra d¯o` i va `o nh˜ u ng n˘ am ca ´ c ba `i toa ´ n cu c tri va ´e ky’ 20, d¯´ˆen gia’i tı´ch ˜ y d¯u o c nh˜ u ng tha `nh tu u quan d¯`aˆu cu’a thˆ `m tı´ch lu ´en `nh chuˆ a’n mu c viˆe.c nghiˆen c´ u u va ` trı`nh ba `y ca ´ c kiˆ tro.ng va ` no ´ d¯˜a tro’ tha ´ n ho.c th´ u c toa - a.i ho.c Su pha.m, d¯u.o c viˆ ´et ´n D Gia ´ o trı`nh na `y da `nh cho sinh viˆen ca ´ c l´o.p Toa - a.i ho.c Su `m d¯˜a d¯o.c cho sinh viˆen khoa Toa ´n D trˆen co so’ Ba`i gia’ng gia’i tı´ch -ˆ ´e nh˜ `an b˘ ˜ ng la pha.m Huˆ u.ng n˘ am v` u.a qua D ay cu ` ho.c phˆ a´t buˆ o.c cuˆo´i cu`ng `e mˆon gia’i tı´ch ma` sinh viˆen pha’i ho.c chı´nh khoa vˆ ´ ´et va `an hu.´ `om chu.o.ng ly ´ thuyˆ ` co ´ phˆ o.ng dˆ a˜n gia’i ba `i Nˆ o.i dung gia ´ o trı`nh gˆ ´en th´ `nh cho viˆe.c trı`nh ba `y nh˜ u ng kiˆ u c co tˆ a.p cu`ng phu lu.c Hai chu o ng d¯`aˆu da ba’n, d¯a.i cu.o.ng cu’a khˆ ong gian d¯i.nh chuˆ a’n va ` mˆo.t sˆo´ d¯i.nh ly ´ quan cu’a gia’i ´en tı´nh Ca `n la.i xe ´ t ca ´ c vˆa´n d¯`ˆe cu thˆe’ ho.n nhu ca ´c tı´ch `m tuyˆ ´ c chu o ng co p ´en ong gian Hilbert va ` ca ´ c vˆa´n d¯`ˆe liˆen quan d¯´ˆen toa ´ n tu’ tuyˆ khˆ ong gian L , khˆ o.i chu.o.ng trı`nh hiˆe.n `nh cu’a nga `nh toa ´ n ca ´c tı´nh Ca ´ c nˆ o.i dung na `y phu` ho p v´ Typeset by AMS-TEX tru.` o.ng su pha.m, d¯u.o c cho.n lo.c theo phu.o.ng chˆ am tinh gia’n va ` co ba’n giu ´ p sinh ´ i nhı`n thˆ o´ng nhˆ a´t d¯oˆ´i v´ o.i nga `nh gia’i tı´ch viˆen co ´ d¯u.o c ca ´en th´ `an gia’i tı´ch ´e th` ` pha ´ t triˆe’n ca ´ c kiˆ u.c cu’a ca ´ c ho.c phˆ Mˆ on ho.c na `y kˆ u.a va `an oˆn la.i ca ´en th´ `e khˆ o c d¯´o Do d¯´o sinh viˆen cˆ ´ c kiˆ u c vˆ ong gian mˆetric, tˆo pˆ o, tru ´ ´et d¯oˆ d¯o, tı´ch phˆ ˜ ng nhu mˆo.t sˆo´ ky˜ n˘ ang tı´nh toa ´ n cu’a gia’i tı´ch cˆo’ ly ´ thuyˆ an cu - ˆe’ giu ´en th´ d¯iˆe’n D ´ p sinh viˆen tˆa.p vˆ a.n du.ng kiˆ u.c d¯˜a ho.c, cuˆo´i mˆo˜i mu.c co ´ mˆo.t sˆo´ `an cuˆ ´ ng Phˆ o´i co ´ hu ´ o ng dˆ a˜n va ` gia’i mˆo.t sˆo´ ca ´ c ba `i tˆ a.p nhu la ` ba `i tˆ a.p tu o ng u ´ thˆe’ ho.c tˆo´t ho.n nh˜ u.ng go i ´y d¯ˆe’ sinh viˆen co ´ m o.n ca ´ c d¯`oˆng nghiˆe.p o’ Tˆo’ Gia’i tı´ch Khoa Toa ´ n, Ca ´ c ta ´ c gia’ xin d¯u.o c ca ´e d¯˜a d¯´o ng go ´en va `eu kiˆe.n d¯ˆe’ gia o ng d¯a.i ho.c Su pha.m Huˆ ´ p ´y kiˆ ` ta.o d¯iˆ ´ o trı`nh Tru ` `an in ´ ng tˆ oi mong nhˆ a.n d¯u o c nh˜ u ng phˆe bı`nh, go ´ p ´y d¯ˆe’ nh˜ u ng lˆ na `y d¯o` i Chu ´en tˆ o’ sung va ` ca’i tiˆ o´t ho.n sau gia ´ o trı`nh d¯u.o c bˆ Chu.o.ng ˆ ˆ´N T´INH D ˆ’ N - I.NH CHUA KHONG GIAN TUYE Kh´ niˆe.m khˆ ong gian tuyˆe´n t´ınh (hay khˆ ong gian vecto.) l` a mˆo.t nh˜ u.ng kh´ niˆe.m quan tro.ng v` a co ba’n cu’a to´ an ho.c hiˆe.n d¯a.i C´ ac vˆa´n d¯`ˆe cu’a d¯a.i sˆo´ y thuyˆe´t d¯i.nh th´ u c, ma trˆ a.n, hˆe phu o ng tr`ınh tuyˆe´n t´ınh, tuyˆe´n t´ınh nhu l´ at biˆe’u v` a tr`ınh b` ay mˆo.t c´ach nhˆ a´t qu´ an trˆen ngˆon ng˜ u v` a cˆa´u tr´ uc cu’a d¯u.o c ph´ n ung ta am to´ an trˆen c´ac tˆa.p R hay R ch´ khˆ ong gian vecto Trong gia’i tı´ch, l` uc sˆo´ ho.c cu’a tˆ a.p n` ay Tuy nhiˆen bu ´ o c v`ao c´ac l˜ınh kha ´ quen thuˆ o.c v´o i cˆa´u tr´ ’ ac, ch˘ ang ha.n l´ y thuyˆe´t phu o ng tr`ınh vi phˆ an, phu o ng tr`ınh t´ıch phˆ an, vu c kh´ `an xˆ o ng xuyˆen l` am viˆe.c trˆen tˆa.p c´ ac h` am sˆo´, ta cˆ ay du ng c´ ac cˆa´u pha’i thu ` ´en tı´nh d¯ˆe’ thu c hiˆe.n ca ´ c phe ´ p toa ´ n d¯a.i sˆo´ trˆen tˆa.p c´ac h`am tr´ uc khˆ ong gian tuyˆ - `ˆ am to´ an gia’i t´ıch d¯u.o c trˆen c´ac khˆ ong gian aˆ´y mˆo.t sˆo´ d¯o´ D ong th` o.i, d¯ˆe’ c´o thˆe’ l` ung ta pha’i d¯u a cˆa´u tr´ uc mˆetric v`ao cho ch´ ung Tuy nhiˆen nˆe´u c´ach tu nhiˆen ch´ uc khˆ ong gian vecto v` a cˆa´u tr´ uc khˆ ong gian mˆetric th`ı nghiˆen c´ u.u riˆeng r˜e cˆa´u tr´ ` ng v´ `eu g`ı m´o i Chu ´ ng ta hy vo.ng r˘ a o.i su kˆe´t ho p nhˆ a´t ta s˜e khˆ ong thu d¯u o c d¯iˆ a´u tr´ uc n` ay th`ı c´ac vˆa´n d¯`ˆe nghiˆen c´ u u c` ung nh˜ u ng kˆe´t qua’ m´o.i d¯.inh gi˜ u a hai cˆ `an lu.o t tr`ınh b` `eu ho.n C´ ac nˆ o.i dung d¯o´ s˜e d¯u.o c lˆ ay qua c´ ac s˜e xuˆ a´t hiˆe.n nhiˆ ao tr`ınh n` ay Mo’ d¯`aˆu, mu.c §1 da `nh cho viˆe.c ˆon la.i c´ac kh´ niˆe.m chu o ng cu’a gi´ ´et liˆen quan d¯ˆe´n khˆ ´ c mu.c kha ´ c la` nˆ o.i dung v` a t´ınh chˆ a´t d¯˜a biˆ ong gian vecto Ca `y m´o.i cu’a chu.o.ng na ˆ ˆ´N T´INH §1 KHONG GIAN TUYE - i.nh ngh˜ıa Mˆ ´en tı´nh hay khˆ 1.1 D o.t khˆ ong gian tuyˆ ong gian vecto X trˆen o.ng K l` a mˆo.t tˆ a.p ho p kh´ ac trˆ o´ng X, c´o trang bi hai ph´ep to´ an cˆo.ng (+) mˆo.t tru.` o ng) nghiˆe.m d¯u ´ ng c´ac tiˆen d¯`ˆe sau: v` a ph´ep nhˆan ngo` (nhˆ an vˆ o hu ´ `an tu’ (x, y) ∈ X × X 1) (X, +) l` a mˆo.t nh´ om Abel, ngh˜ıa l` a: v´ o.i mˆo˜i c˘a.p phˆ `an tu’ cu’a X k´ o.i mˆo.t phˆ y hiˆe.u x + y, go.i l` a tˆ o’ng cu’a x v` a y, thoa’ m˜an cho u ´.ng v´ a x + y = y + x v´ o.i mo.i x, y ∈ X b (x + y) + z = x + (y + z) v´ o.i mo.i x, y, z ∈ X `an tu’ khˆ `on ta.i phˆ `an tu’ ∈ X, go.i l` a phˆ ong cho c Tˆ ∀x ∈ X, x + = + x = x `on ta.i mˆo.t phˆ `an tu’ k´ `an tu’ d¯ˆ d V´ o.i mo.i x ∈ X tˆ y hiˆe.u −x, go.i l` a phˆ o´i cu’a x cho x + (−x) = o.ng trˆen X, t´ u.c l`a mˆo˜i c˘a.p (α, x) ∈ K × X u ´.ng 2) X c` ung ph´ep nhˆan vˆ o hu.´ `an tu’ cu’a X, k´ y hiˆe.u αx, thoa’ m˜an v´ o.i mˆo.t phˆ a α(x + y) = αx + αy v´ o.i mo.i α ∈ K, x, y ∈ X b (α + β)x = αx + βx v´ o.i mo.i α, β ∈ K, x ∈ X c α(βx) = (β α)x = αβx, α, β ∈ K, x ∈ X d ∀x ∈ X, 1x = x `an tu’ cu’a X go.i l` a c´ac vecto., α ∈ K go.i l` a vˆ o hu.´ o.ng Trong gi´ ao C´ac phˆ o ng K l` a R (tru ` o ng c´ ac sˆo´ thu c) ho˘a.c C (tru `o ng tr`ınh n` ay ta chı’ l` am viˆe.c v´o i tru ` c´ac sˆo´ ph´ u c) V´ı du o.i c´ac ph´ep to´ Tˆ a.p ho p K n = K × × K v´ an cˆo.ng v` a nhˆ an vˆ o hu.´o.ng:    `an n lˆ x + y = (x1 + y1 , , xn + yn ), αx = (αx1 , , αxn ) d¯o´ α ∈ K, x = (x1 , , xn ), y = (y1 , , yn ) ∈ K n l` a mˆo.t khˆ ong gian -˘ a.c biˆe.t n = th`ı K l` a mˆo.t khˆ ong gian vecto trˆen ch´ınh n´ o vecto D ac d¯a th´ u.c mˆo.t biˆe´n thu c trˆen R, k´ y hiˆe.u l` a P v´ o.i ph´ep cˆo.ng hai Tˆ a.p ho p c´ o.t sˆo´ v´ o.i d¯a th´ u.c d¯u.o c x´ac d¯i.nh theo c´ ach thˆ ong thu.`o.ng d¯a th´ u.c, ph´ep nhˆan mˆ c˜ ung l` a mˆo.t khˆ ong gian vecto a´t ca’ c´ac h` am sˆo´ thu c ho˘ a.c ph´ u.c x´ac d¯i.nh trˆen mˆo.t tˆ a.p A kh´ ac Tˆ a.p ho p tˆ an trˆ o´ng v´ o i c´ac ph´ep to´ ∀x ∈ A, (f + g)(x) = f (x) + g(x), (λf )(x) = λf (x), l` a mˆo.t khˆ ong gian vecto., ta k´ y hiˆe.u l` a F(A) Tˆa.p ho p c´ ac d˜ay sˆo´ thu c (ho˘ a.c ph´ u.c) v´ o.i c´ac ph´ep cˆo.ng v` a ph´ep nhˆ an o.ng d¯u.o c x´ac d¯.inh theo c´ ach thˆ ong thu.` o.ng lˆ a.p th` anh khˆ ong gian vecto., k´ y vˆ o hu.´ o i N l` a tˆ a.p c´ ac sˆo´ tu hiˆe.u l` a s Thˆ a.t ra, theo k´ y hiˆe.u o’ v´ı du 3, ta c´o s = F(N), v´ nhiˆen -ˆ 1.2 D o.c lˆ a.p tuyˆ e´n t´ınh-Co so’ a c´ac vecto a mˆo.t khˆ ong gian vecto v` a x1 , x2 , , xn l` 1.2.1 Gia’ su’ X l` thuˆ o.c X Tˆ o’ng n  α1 x1 + · · · + αn xn = αi xi , i=1 d¯o´ c´ac αi ∈ K d¯u.o c go.i l` a mˆo.t tˆ o’ ho p tuyˆe´n t´ınh cu’a c´ac vecto x1 , , xn v´ o.i c´ac hˆe sˆ o´ α1 , , αn Cho M l` a mˆo.t tˆ a.p cu’a X Ta go.i M l` a mˆo.t tˆ a.p ho p d¯ˆ o.c lˆ a.p tuyˆe´n t´ınh `an tu’ {x1 , , xn } ⊂ M va ´ c phˆ ` ca ´ c sˆo´ α1 , , αn ∈ K, nˆe´u mo.i tˆ a.p h˜ u.u ha.n ca ´eu nˆ n  αi xi = th`ı αi = 0, i = 1, , n, i=1 d¯o´ n l` a sˆo´ tu nhiˆen bˆ a´t k` y Tru.` o.ng ho p M khˆ ong pha’i l` a d¯oˆ c lˆa.p tuyˆe´n t´ınh th`ı ta go.i M l` a phu thuˆ o.c tuyˆe´n t´ınh 1.2.2 Cho B l` a mˆo.t tˆ a.p kh´ ac trˆ o´ng cu’a khˆ ong gian vecto X Tˆa.p B a mˆo.t co so’ ( hay co so’ Hamel ) cu’a X nˆe´u: d¯u.o c go.i l` a) B l` a mˆo.t tˆ a.p ho p d¯oˆ c lˆa.p tuyˆe´n t´ınh a mˆo.t tˆ o’ ho p tuyˆe´n t´ınh cu’a b) B sinh X, ngh˜ıa l` a v´ o.i mo.i x ∈ X, x l` `an tu’ cu’a B : ac phˆ mˆo.t sˆo´ h˜ u.u ha.n c´ n     ∀x ∈ X ∃ α1 , , αn ∈ K; ∃ x1 , , xn ∈ B : x = αi xi (1.2) i=1 `e Gia’ su’ B l` 1.2.3 Mˆ e.nh d ¯ˆ a mˆ o.t co so’ cu’ a khˆ ong gian vecto X Khi d¯´ o ac d¯.inh mˆ o.t c´ ach nhˆ a´t biˆe’u diˆ˜e n cu’ a vecto x ∈ X cho bo’.i (1.2) d¯u.o c x´ ` ng tˆ o.c r˘a o’ng (1.2) Ch´ u ´y Trong ph´ at biˆe’u cu’a mˆe.nh d¯`ˆe n` ay ta qui u.´ ac t` u ng d¯oˆi mˆo.t; khˆ a ong co ´ m˘a.t c´ac ha.ng tu’ da.ng 0xj v` c´ac vecto xj kh´ u.a, tı´nh chˆ a´t giao hoa ´ n cu’a phe ´ p + nˆen ta khˆ ong quan tˆ am d¯ˆe´n th´ u tu ho.n n˜ cu’a c´ac ha.ng tu’ ˜e n kh´ Ch´ u.ng minh Gia’ su’ c´o hai c´ ach biˆe’u diˆ ac nhau: x = α1 x1 + · · · + αn xn = β1 y1 + · · · + βm ym , v´ o.i αi = 0, βj = 0, i = 1, , n, j = , m Ta loa.i bo’ c´ac ha.ng tu’ αj xj v` a βk yk o’ hai vˆe´ nˆe´u αj = βk v` a xj = yk L´ uc a βk yk c`on la.i o’ hai vˆe´ s˜e xa’y ho˘ a.c nˆe´u a.c xj = yk ho˘ d¯o´ c´ac ha.ng tu’ αj xj v` `e mˆo.t vˆe´ v` ac ha.ng tu’ d¯o´ vˆ a viˆe´t la.i th` anh xj = yk th`ı αj = βk Chuyˆe’n c´ µ1 v1 + · · · + µr vr = 0, < r ≤ n + m - iˆ `eu n` Do B l` a mˆo.t tˆ a.p ho p d¯oˆ c lˆa.p tuyˆe´n t´ınh nˆen µ1 = · · · = µr = D ay a αj ho˘ a.c βk thı` kh´ ac khˆ ong ho˘ a.c αj − βk = vˆ o l´ y v`ı mˆo˜i µk pha’i l` Bˆay gi` o gia’ su’ B l` a mˆo.t co so’ cu’a khˆ ong gian vecto X v` a B l` a tˆ a.p h˜ u.u ha.n `an tu’ `an tu’ Khi d¯o´ mo.i tˆ a.p d¯oˆ c lˆa.p tuyˆe´n t´ınh cu’a X c´o tˆ o´i d¯a k phˆ c´o k phˆ `eu d¯o´ nhu la ´en th´ ´en tı´nh!) ` ca ´ ch ˆ on la.i kiˆ u.c cu’a d¯a.i sˆo´ tuyˆ (H˜ ay ch´ u.ng minh d¯iˆ `eu, sˆo´ phˆ `an tu’ cu’a B gˆ `om k phˆ `an tu’ L´ uc n` ay ta n´ oi X l` a khˆ ong gian h˜ u.u ha.n chiˆ `eu cu’a X v` d¯u.o c go.i l` a sˆ o´ chiˆ a k´ y hiˆe.u l` a dim X = k Nˆe´u X khˆ ong pha’i l` a khˆ ong `eu th`ı ta go.i n´ `eu v` o l` a khˆ ong gian vˆ o ha.n chiˆ a viˆe´t dim X = ∞ gian h˜ u u ha.n chiˆ - ˆe’ nhˆ Cho B l` a tˆ a.p cu’a X D a.n biˆe´t B l` a co so’ cu’a khˆ ong gian vecto X, ta c`on c´o: - i.nh l´ ong gian vecto X v` a 1.2.4 D y Tˆ a.p ∅ = B ⊂ X l` a co so’ cu’ a khˆ o.c lˆ a.p tuyˆe´n t´ınh tˆ o´i d¯a.i (ngh˜ıa l` a B d¯oˆ c lˆa.p tuyˆe´n t´ınh v` a chı’ B l` a tˆ a.p ho p d¯ˆ nˆe´u M  B th`ı M phu thuˆ o.c tuyˆe´n t´ınh) Ch´ u.ng minh - iˆ `eu kiˆe.n cˆ `an Cho M  B Gia’ su’ x ∈ M v` a D ax∈ / B Khi d¯o´ theo d¯i.nh ngh˜ıa co so’., pha’i c´o x1 , , xn ∈ B, α1 , , αn ∈ K cho x= n  i=1 αi xi hay n  αi xi − 1x = n=1 Hˆe {x1 , , xn , x} phu thuˆ o.c tuyˆe´n t´ınh nˆen M phu thuˆ o.c tuyˆe´n t´ınh - iˆ `eu kiˆe.n d¯u’ V´ b D o.i x ∈ X, nˆe´u x ∈ B th`ı x = 1x Nˆe´u x ∈ / B th`ı `on ta.i mˆo.t tˆ B ∪ {x} phu thuˆ o.c tuyˆe´n t´ınh nˆen tˆ o’ ho p tuyˆe´n t´ınh α1 x1 + · · · + αn xn = ` cho tˆa´t ca’ c´ac α1 , , αn khˆ ong d¯`oˆng th` o.i b˘ a ng khˆ ong Trong c´ac vecto xi n` ay pha’i c´o m˘a.t vecto x, ch˘ a d¯o´ α1 = v`ı nˆe´u khˆ ong pha’i a’ng ha.n x = x1 v` a.y th`ı B s˜e phu thuˆ o.c tuyˆe´n t´ınh Do d¯o´ nhu vˆ −1 x = x1 = −(α−1 α2 x2 + · · · + α1 αn xn ) Vˆ a.y B l` a mˆo.t co so’ cu’a X - inh l´ a mˆ o.t khˆ ong gian vecto v` a M l` a mˆ o.t tˆ a.p ho p d¯ˆ o.c 1.2.5 D y Gia’ su’ X l` `on ta.i mˆ lˆ a.p tuyˆe´n t´ınh X L´ uc d¯´ o tˆ o.t co so’ B cu’ a X cho B ⊃ M y hiˆe.u F l` a tˆ a.p ho p tˆ a´t ca’ c´ac tˆa.p ho p N d¯oˆ c lˆa.p tuyˆe´n t´ınh Ch´ u.ng minh K´ u tu trˆen X ch´ u.a M Khi d¯o´ F = ∅ v`ı M ∈ F Ta d¯i.nh ngh˜ıa quan hˆe th´ F nhu sau: v´ a chı’ N1 ⊂ N2 Gia’ su’ A ⊂ F l` o.i N1 , N2 ∈ F, N1 ≤ N2 v` a ` ng ho p cu’a tˆ a a´t ca’ c´ac tˆa.p N thuˆ o.c mˆo.t tˆ a.p s˘ a´p th˘ a’ng cu’a F Ta d¯a˘ t N0 b˘ a mˆo.t cˆa.n trˆen cu’a A Do F thoa’ m˜an c´ac gia’ thiˆe´t cu’a bˆ o’ d¯`ˆe A L´ uc d¯o´ N0 l` `on ta.i mˆo.t phˆ `an tu’ tˆ Zorn nˆen F tˆ o´i d¯a.i B Vˆ a.y B l` a co so’ pha’i t`ım `on ta.i co so’ 1.2.6 Hˆ e qua’ Mo.i khˆ ong gian vecto X = {0} d¯`ˆeu tˆ - i.nh l´ `oi a´p du.ng D a´y x ∈ X, x = v` a d¯a˘ t M = {x} rˆ y 1.2.5 Ch´ u.ng minh Lˆ 1.3 Khˆ ong gian vecto - i.nh ngh˜ıa Cho X l` a M l` a mˆo.t tˆ a.p 1.3.1 D a mˆo.t khˆ ong gian vecto v` an cˆo.ng v` a nhˆ an vˆ o hu ´ o ng trˆen X thu he.p kh´ ac trˆ o´ng cu’a X Gia’ su’ c´ac ph´ep to´ a la.i trˆen M c˜ ung l` am cho M th` anh mˆ o.t khˆ ong gian vecto Khi d¯o´ ta go.i M l` a´t la ` khˆ ong gian con) cu’a X mˆo.t khˆ ong gian vecto (hay go.i t˘ - i.nh l´ - iˆ `eu kiˆe.n cˆ `an v` 1.3.2 D y Cho M l` a mˆ o.t tˆ a.p kh´ ac trˆ o´ng cu’ a X D a anh mˆ o.t khˆ ong gian cu’ a X l` a: d¯u’ d¯ˆe’ M tro’ th` a ∀ x, y ∈ M : x + y ∈ M b ∀x ∈ M, ∀α ∈ K : αx ∈ M - iˆ `eu kiˆe.n cˆ `an hiˆe’n nhiˆen Do gia’ thiˆe´t, c´ac ph´ep to´ Ch´ u.ng minh D an cˆo.ng v` a o ng l` a k´ın trˆen M Ho n n˜ u a, c´ac t´ınh chˆ a´t cu’a c´ac ph´ep to´ an n` ay vˆ a˜n nhˆ an vˆ o hu ´ `an tu’ cu’a M nˆen ta ´ m tiˆen d¯`ˆe cu’a mˆo.t khˆ ong c`on d¯u ´ ng ta l` am viˆe.c v´o.i c´ac phˆ `eu kiˆe.n d¯u’ u d¯aˆy cho ph´ep ta suy d¯u o c d¯iˆ gian vecto d¯u o c nghiˆe.m d¯´u ng T` anh, d¯ˆe’ kiˆe’m tra mˆo.t tˆ a.p Y n` ao d¯o´ l` a khˆ ong gian Ch´ u y ´ Trong thu c h` `oi o.i ta thu.` o.ng nh´ ung n´ o v` ao mˆo.t khˆ ong gian vecto d¯a˜ biˆe´t rˆ vecto., ngu.` `eu kiˆe.n cu’a d¯i.nh l´ kiˆe’m tra c´ac d¯iˆ y trˆen 1.3.3 V´ı du `om tˆa´t ca’ c´ac d˜ ay sˆo´ thu c ho˘ a.c ph´ u.c x = (xn )n cho Tˆa.p ho p l1 gˆ ∞  |xn | < ∞ l` a mˆo.t khˆ ong gian cu’a khˆ ong gian s c´ac d˜ay sˆo´ n=1 Tˆ a.p ho p c´ a ac h` am sˆo´ liˆen tu.c x´ac d¯i.nh trˆen d¯oa.n [a, b] k´ y hiˆe.u C[a,b] l` mˆo.t khˆ ong gian cu’a khˆ ong gian c´ ac h`am sˆo´ F([a, b]) ay sˆo´ thu c ho˘a.c Tˆ a.p ho p l∞ = {x = (xn )n ⊂ K : sup |xn | < ∞} c´ac d˜ n∈N - ´o la a.n c˜ ung l` a mˆo.t khˆ ong gian vecto D ph´ u.c x = (xn )n bi ch˘ ` khˆ ong gian cu’a ˜ y sˆo´ ´ c da khˆ ong gian vecto s ca - i.nh l´ T` u D y 1.3.2 ta c´ o mˆe.nh d¯`ˆe sau `e Giao mˆ 1.3.4 Mˆ e.nh d ¯ˆ o.t ho tu`y ´y c´ ac khˆ ong gian cu’ a X l` a mˆ o.t khˆ ong gian cu’ a X - ˘a.t Ch´ u.ng minh Gia’ su’ (Mi )i∈I l` a mˆo.t ho c´ac khˆ ong gian cu’a X D Mi Ta c´o M kh´ ac trˆ o´ng v`ı n´ o c´o ch´ u.a vecto Nˆe´u x, y ∈ M, (t´ u.c M = i∈I l` a x, y ∈ Mi , ∀i ∈ I), α ∈ K th`ı x + y ∈ Mi , αx ∈ Mi v´ o.i mo.i i ∈ I Do d¯o´ x + y ∈ M v` a αx ∈ M Vˆ a.y M l` a khˆ ong gian cu’a X - i.nh ngh˜ıa Gia’ su’ A l` 1.3.5 D a mˆo.t tˆ a.p cu’a khˆ ong gian vecto X Luˆ on ’ `on ta.i mˆo.t khˆ ang ha.n ba’n thˆ an khˆ ong gian luˆ on tˆ ong gian cu’a X ch´ u a A (ch˘ ung l` a mˆo.t khˆ ong gian X) Giao cu’a ho tˆ a´t ca’ c´ac khˆ ong gian ch´ u a A c˜ ong gian n` ay d¯u.o c goi l` a khˆ ong gian sinh bo’.i A hay l` a bao ch´ u.a A Khˆ y hiˆe.u l` a A ho˘ a.c span (A) Theo d¯i.nh ngh˜ıa, d¯aˆy tuyˆe´n t´ınh cu’a A v` a d¯u o c k´ a.p A Ta c´o: l` a khˆ ong gian b´e nhˆ a´t cu’a X ch´ u a tˆ `e Bao tuyˆe´n t´ınh cu’ a tˆ 1.3.6 Mˆ e.nh d ¯ˆ a.p A l` a tˆ a.p ho p tˆ a´t ca’ c´ ac tˆ o’ ho p `an tu’ thuˆ o.c A tuyˆe´n t´ınh cu’ a c´ ac phˆ n  -˘ ˜ Ch´ u.ng minh D αi xi | αi ∈ K, xi ∈ A, n ∈ N Ro `ng theo a.t M = i=1 - i.nh l´ D y 1.3.2, M l` a khˆ ong gian cu’a X Ho.n n˜ u.a t` u A ⊂ M suy A |2 ≥ y, y T` u d¯o´ ta suy bˆ a´t d¯a˘’ ng th´ u.c (1.1) ` Ch´ uy ´: Dˆ a´u b˘ a ng bˆ a´t d¯a˘’ ng th´ u.c Schwarz xa’y v` a chı’ x v` a y phu thuˆ o.c tuyˆe´n t´ınh 74 - i.nh l´ `en Hilbert thı` cˆ 1.1.2 D y Nˆe´u H l` a khˆ ong gian tiˆ ong th´ u.c  x = x, x , x ∈ H (1.2) x´ ac d¯.inh mˆ o.t chuˆ a’n trˆen H ´et la.i tha V´ o.i ky ´ hiˆe.u m´ o.i na `y, bˆ a´t d¯a˘’ ng th´ u.c Schwarz d¯u.o c viˆ `nh | x, y | ≤ x y u tiˆen d¯`ˆe d) d¯i.nh ngh˜ıa t´ıch vˆ o hu.´ o.ng ta suy ra: Ch´ u.ng minh T` ∀ x ∈ H, x ≥ 0; x = v` a chı’ x = T` u a) v` a c) ta c´o : λx =  λx, λx =  |λ|2 x2 = |λ| x v´ o.i mo.i x ∈ H, λ ∈ K ´ep theo, v´ ´: Tiˆ o.i mo.i x, y ∈ H ta co x + y2 = x + y, x + y = x2 + y, x + x, y + y2 = x2 + x, y + x, y + y2 = x2 + 2Re ( x, y ) + y2 ≤ x2 + 2| x, y | + y2 ´ du.ng bˆ Ap a´t d¯a˘’ ng th´ u.c Schwarz, ta c´o x + y2 ≤ x2 + 2x y + y2 = (x + y)2 ´e  ·  la Vˆa.y x + y ≤ x + y Nhu thˆ ` mˆo.t chuˆ a’n trˆen H - i.nh l´ `en Hilbert H ch´ınh l` Nhˆ a.n x´ et Do D y 1.1.2, ta thˆ a´y khˆ ong gian tiˆ a a’n ca’m sinh t` u t´ıch vˆ o hu.´ o.ng bo’.i cˆong th´ u.c mˆo.t khˆ ong gian d¯i.nh chuˆ a’n v´ o.i chuˆ a.y mo.i kh´ niˆe.m, kˆe´t qua’ d¯a˜ d¯u.o c thiˆe´t lˆ a.p cho khˆ ong gian d¯i.nh (1.2) Nhu vˆ `en Hilbert ong gian tiˆ chuˆ a’n d¯`ˆeu c´ o thˆe’ ´ ap du.ng d¯u o c cho khˆ 1.2 Khˆ ong gian Hilbert `en Hilbert, xem nhu khˆ ong gian d¯i.nh chuˆ a’n, c´ o thˆe’ d¯`aˆy Mˆ o.t khˆ ong gian tiˆ d¯u’ ho˘ a.c khˆ ong d¯`aˆy d¯u’ 75 `en Hilbert v` Nˆe´u H l` a mˆo.t khˆ ong gian tiˆ a d¯`aˆy d¯u’ d¯oˆ´i v´ o.i chuˆ a’n ca’m sinh ˜ ng tu.o.ng tu tru.` o hu.´ o.ng th`ı d¯u.o c go.i l` a khˆ ong gian Hilbert Cu o.ng ho p t` u t´ıch vˆ `en Hilbert, o.ng K la ` R hay C ta co ´ khˆ ong gian Hilbert khˆ ong gian tiˆ ` theo tru.` ong gian Hilbert ph´ u.c thu c hay khˆ 1.3 V´ı du a khˆ ong gian Hilbert thu c (tu.o.ng u ´.ng Cn ) l` ´.ng ph´ u.c) 1) Rn (tu.o.ng u o hu.´ o.ng v´ o.i t´ıch vˆ x, y = n  xi yi (t.u , x, y

Ngày đăng: 05/01/2023, 13:00

TỪ KHÓA LIÊN QUAN