Đại Số Tuyến Tính ThS Đặng Văn Cường ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH 281 Đại Số Tuyến Tính ThS Đặng Văn Cường ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH §1 ÁNH XẠ TUYẾN TÍNH 281 Đại Số Tuyến Tính[.]
Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH 281 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH §1 : ÁNH XẠ TUYẾN TÍNH 281 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH §1 : ÁNH XẠ TUYẾN TÍNH Khái niệm ánh xạ tuyến tính 281 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH §1 : ÁNH XẠ TUYẾN TÍNH Khái niệm ánh xạ tuyến tính Definition 1.1 Cho V V hai không gian vectơ K Ánh xạ f : V → V gọi ánh xạ tuyến tính f thoả mãn hai tính chất sau: (L1 ) f (x + y) = f (x) + f (y), ∀x, y ∈ V (tính bảo tồn phép cộng); (L2 ) f (λx) = λf (x), ∀x ∈ V, ∀λ ∈ K (tính bảo tồn phép nhân với vơ hướng) 281 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH §1 : ÁNH XẠ TUYẾN TÍNH Khái niệm ánh xạ tuyến tính Definition 1.1 Cho V V hai không gian vectơ K Ánh xạ f : V → V gọi ánh xạ tuyến tính f thoả mãn hai tính chất sau: (L1 ) f (x + y) = f (x) + f (y), ∀x, y ∈ V (tính bảo toàn phép cộng); (L2 ) f (λx) = λf (x), ∀x ∈ V, ∀λ ∈ K (tính bảo tồn phép nhân với vơ hướng) 281 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Một ánh xạ tuyến tính từ V đến cịn gọi phép biến đổi tuyến tính hay phép biến đổi tuyến tính hay tốn tử tuyến tính V 282 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Một ánh xạ tuyến tính từ V đến cịn gọi phép biến đổi tuyến tính hay phép biến đổi tuyến tính hay tốn tử tuyến tính V Nhận xét: Cho f : V → V ánh xạ, V V hai K không gian vectơ Từ định nghĩa ánh xạ tuyến tính, dễ dàng thấy: 282 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Một ánh xạ tuyến tính từ V đến cịn gọi phép biến đổi tuyến tính hay phép biến đổi tuyến tính hay tốn tử tuyến tính V Nhận xét: Cho f : V → V ánh xạ, V V hai K không gian vectơ Từ định nghĩa ánh xạ tuyến tính, dễ dàng thấy: (1) f ánh xạ tuyến tính ⇔ f (λx n+ µy)= λfn(x) + µf (y); ∀x, y ∈ V, λ, µ ∈ K P P λi (xi ); ∀x1 , x2 , , xn ∈ V, λ1 , λ2 , , λn ∈ ⇔f λ i xi = i=1 i=1 K 282 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Một ánh xạ tuyến tính từ V đến cịn gọi phép biến đổi tuyến tính hay phép biến đổi tuyến tính hay tốn tử tuyến tính V Nhận xét: Cho f : V → V ánh xạ, V V hai K không gian vectơ Từ định nghĩa ánh xạ tuyến tính, dễ dàng thấy: (1) f ánh xạ tuyến tính ⇔ f (λx n+ µy)= λfn(x) + µf (y); ∀x, y ∈ V, λ, µ ∈ K P P λi (xi ); ∀x1 , x2 , , xn ∈ V, λ1 , λ2 , , λn ∈ ⇔f λ i xi = i=1 i=1 K (2) Nếu f ánh xạ tuyến tính thì: f (0V ) = 0V , f (−x) = −f (x); ∀x ∈ V 282 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân sau đây: 282 ... TÍNH §1 : ÁNH XẠ TUYẾN TÍNH Khái niệm ánh xạ tuyến tính 281 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH §1 : ÁNH XẠ TUYẾN TÍNH Khái niệm ánh xạ tuyến tính Definition.. .Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH §1 : ÁNH XẠ TUYẾN TÍNH 281 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương III ÁNH XẠ TUYẾN TÍNH... 2 83 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Do gf ánh xạ tuyến tính 284 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Do gf ánh xạ tuyến tính Property 1.2 Qua ánh xạ tuyến tính,