1. Trang chủ
  2. » Tất cả

Bài giảng Đại số tuyến tính Chương 2 Không gian vectơ

424 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 424
Dung lượng 656,12 KB

Nội dung

Đại Số Tuyến Tính ThS Đặng Văn Cường ĐH Duy Tân Chương II KHÔNG GIAN VECTƠ 158 Đại Số Tuyến Tính ThS Đặng Văn Cường ĐH Duy Tân Chương II KHÔNG GIAN VECTƠ Trong môn hình học giải tích (sơ cấp) ở trường[.]

Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương II KHÔNG GIAN VECTƠ 158 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương II KHƠNG GIAN VECTƠ Trong mơn hình học giải tích (sơ cấp) trường phổ thơng trung học, bạn đọc làm quen với vectơ tự phép toán chúng Tập hợp vectơ tự không gian với phép cộng vectơ nhân số thực với vectơ có nhiều tính chất, có tính chất bản: (1) (~ x+~ y) + ~ z=~ x + (~ y+~ z ); (2) ~ x + ~0 = ~0 + ~ x=~ x; (3) ~ x + (−~ x = (−~ x) + ~ x = ~0; (4) ~ x+~ y=~ y+~ x; (5) λ(~ x+~ y ) = λ~ x + λ~ y; (6) (λ + µ)~ x = λ~ x + µ~ x; (7) (λµ)~ x = λ(µ~ x); (8) 1~ x=~ x, với ba vectơ tự ~ x, ~ y, ~ z tuỳ ý; cặp số thực λ, µ 158 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Chương II KHÔNG GIAN VECTƠ Trong mơn hình học giải tích (sơ cấp) trường phổ thông trung học, bạn đọc làm quen với vectơ tự phép toán chúng Tập hợp vectơ tự không gian với phép cộng vectơ nhân số thực với vectơ có nhiều tính chất, có tính chất bản: (1) (~ x+~ y) + ~ z=~ x + (~ y+~ z ); (2) ~ x + ~0 = ~0 + ~ x=~ x; (3) ~ x + (−~ x = (−~ x) + ~ x = ~0; (4) ~ x+~ y=~ y+~ x; (5) λ(~ x+~ y ) = λ~ x + λ~ y; (6) (λ + µ)~ x = λ~ x + µ~ x; (7) (λµ)~ x = λ(µ~ x); (8) 1~ x=~ x, với ba vectơ tự ~ x, ~ y, ~ z tuỳ ý; cặp số thực λ, µ 158 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Nhắc lại tập hợp ma trận cấp m × n trường K, Mm,n (K) (K trường số thực hay trường số phức) với phép cộng ma trận nhân số K với ma trận có tính chất tương tự Sự giống tập hợp vectơ tự không gian tập Mm,n (K) nhiều mơ hình khác thường gặp tốn học dẫn đến việc tổng quát hoá thành khái niệm không gian vectơ mà nghiên cứu chương 159 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân §1 : KHÁI NIỆM VỀ KHƠNG GIAN VECTƠ 160 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân §1 : KHÁI NIỆM VỀ KHÔNG GIAN VECTƠ Định nghĩa khơng gian vectơ 160 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân §1 : KHÁI NIỆM VỀ KHƠNG GIAN VECTƠ Định nghĩa khơng gian vectơ Cho V tập hợp khác rỗng mà phần tử gọi ”vectơ” kí hiệu a, b, c, , u, v, x, y, z, t, K trường số (thực hay phức) mà số từ K gọi ”vơ hướng” kí hiệu λ, µ, γ Giả sử cho hai phép toán: 160 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân §1 : KHÁI NIỆM VỀ KHƠNG GIAN VECTƠ Định nghĩa không gian vectơ Cho V tập hợp khác rỗng mà phần tử gọi ”vectơ” kí hiệu a, b, c, , u, v, x, y, z, t, K trường số (thực hay phức) mà số từ K cịn gọi ”vơ hướng” kí hiệu λ, µ, γ Giả sử cho hai phép toán: - Phép cộng hai vectơ V ×V →V (x, y) 7→ x + y 160 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân §1 : KHÁI NIỆM VỀ KHƠNG GIAN VECTƠ Định nghĩa khơng gian vectơ Cho V tập hợp khác rỗng mà phần tử gọi ”vectơ” kí hiệu a, b, c, , u, v, x, y, z, t, K trường số (thực hay phức) mà số từ K gọi ”vơ hướng” kí hiệu λ, µ, γ Giả sử cho hai phép toán: - Phép cộng hai vectơ V ×V →V (x, y) 7→ x + y 160 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân - Phép nhân vơ hướng với vectơ VK×V →V (λ, x) 7→ λx Ta bảo V với hai phép toán lập thành không gian vectơ K, hay K - không gian vectơ, tiên đề sau thoả mãn: 161 ... cứu chương 159 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân §1 : KHÁI NIỆM VỀ KHÔNG GIAN VECTƠ 160 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân §1 : KHÁI NIỆM VỀ KHÔNG GIAN VECTƠ... 161 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân ∗ Vectơ 0V ∈ V tiên đề (2) gọi vectơ khơng V thường kí hiệu đơn giản không sợ nhầm lẫn Vectơ −x ∈ V tiên đề (3) gọi vectơ đối x 1 62 Đại Số. .. không gian vectơ thực (hay phức) 1 62 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Ví dụ 163 Đại Số Tuyến Tính - ThS Đặng Văn Cường - ĐH Duy Tân Ví dụ Example 2. 1 Hiển nhiên tập hợp vectơ

Ngày đăng: 05/01/2023, 12:58