THCS TOANMATH com 30 HÀM SỐ BẬC NHẤT VÀ HÀM SỐ BẬC HAI Vấn đề 1 Hàm số bậc nhất Kiến thức cần nhớ 1 Định nghĩa + Hàm số bậc nhất là hàm số được cho bởi công thức y ax b= + trong đó a và b là các số th[.]
HÀM SỐ BẬC NHẤT VÀ HÀM SỐ BẬC HAI Vấn đề 1: Hàm số bậc Kiến thức cần nhớ: Định nghĩa: + Hàm số bậc hàm số cho công thức: = y ax + b a b số thực cho trước a ≠ + Khi b = hàm số bậc trở thành hàm số y = ax , biểu thị tương quan tỉ lện thuận y x Tính chất: a) Hàm số bậc , xác định với giá trị x ∈R b) Trên tập số thực, hàm số = y ax + b đồng biến a > nghịch biến a < Đồ thị hàm số = y ax + b với ( a ≠ ) + Đồ thị hàm số = y ax + b đường thẳng cắt trục tung điểm có tung độ b b cắt trục hồnh điểm có hồnh độ − a + a gọi hệ số góc đường thẳng = y ax + b Cách vẽ đồ thị hàm số = y ax + b + Vẽ hai điểm phân biệt đồ thị vẽ đường thẳng qua điểm + Thường vẽ đường thẳng qua giao điểm đồ thị với trục tọa độ b A − ;0 , B ( 0; b ) a THCS.TOANMATH.com 30 + Chú ý: Đường thẳng qua M ( m;0 ) song song với trục tung có phương trình: x − m = , đường thẳng qua N ( 0; n ) song song với trục hồnh có phương trình: y − n = Kiến thức bổ sung Trong mặt phẳng tọa độ cho hai điểm A ( x1; y1 ) , B ( x2 ; y2 ) ( x2 − x1 ) + ( y2 − y1 ) AB = = x Điểm M ( x; y ) trung điểm AB x1 + x2 y1 + y2 = ;y 2 Điều kiện để hai đường thẳng song song , hai đường thẳng vng góc y ax + b đường thẳng ( d ) = : y a ' x + b ' với Cho hai đường thẳng ( d1 ) : = a, a ' ≠ • (d1 ) / /(d ) ⇔ a = a ' b ≠ b ' • (d1 ) ≡ (d ) ⇔ a = a ' b = b ' • ( d1 ) • (d1 ) ⊥ (d ) ⇔ a.a ' = −1 cắt ( d ) ⇔ a ≠ a ' Chú ý: Gọi ϕ góc tạo đường thẳng = y ax + b trục Ox , a > tan ϕ = a Một số tốn mặt phẳng tọa độ: Ví dụ 1) Cho đường thẳng ( d1 ) : y= x + đường thẳng ( d ) : y= ( 2m − m ) x + m2 + m a) Tìm m để (d1 ) / /(d ) THCS.TOANMATH.com 31 b) Gọi A điểm thuộc đường thẳng (d1 ) có hồnh độ x = Viết phương trình đường thẳng (d3 ) qua A vng góc với (d1 ) c) Khi (d1 ) / /(d ) Hãy tính khoảng cách hai đường thẳng (d1 ), ( d ) d) Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d1 ) tính diện tích tam giác OMN với M , N giao điểm (d1 ) với trục tọa độ Ox, Oy Lời giải: a) Đường thẳng (d1 ) / /(d ) 2m − m = ( m − 1)( 2m + 1) = ⇔ ⇔m= − 2 m + m ≠ ( m − 1)( m + ) ≠ (d1 ) / /(d ) b) Vì A điểm thuộc đường thẳng (d1 ) có hồnh độ x = suy Vậy với m = − tung độ điểm A l y = + = ⇒ A ( 2;4 ) Đường thẳng ( d1 ) có hệ số góc a = , đường thẳng ( d ) có hệ số góc a ' ⇒ a '.1 =−1 ⇒ a ' =−1 Đường thẳng ( d3 ) có dạng y =− x + b Vì ( d3 ) qua A ( 2;4 ) suy =−2 + b ⇒ b =6 Vậy đường thẳng ( d3 ) y =− x + c) Khi (d1 ) / /(d ) khoảng cách hai đường thẳng ( d1 ) ( d ) khoảng cách hai điểm A, B thuộc ( d1 ) ( d ) cho AB ⊥ (d1 ), AB ⊥ ( d ) Hình vẽ: Gọi B giao điểm đường thẳng (d3) A (d3 ) (d ) Phương trình hồnh độ giao điểm B THCS.TOANMATH.com (d1) (d2) 32 ( d ) ( d3 ) là: −x + = x − 25 23 25 23 ⇔x= ⇒y= ⇒ B ; 8 8 Vậy độ dài đoạn thẳng AB là: AB= 25 23 − 2 + − 4 = d) Gọi M , N giao điểm đường thẳng ( d1 ) với trục tọa độ Ox, Oy Ta có: Cho y =0 ⇒ x =−2 ⇒ A ( −2;0 ) , cho y =0 ⇒ x =−2 ⇒ N ( −2;0 ) Từ suy OM 2 Tam giác OMN vuông cân O Gọi = ON = ⇒ MN = OH = MN H hình chiếu vng góc O lên MN ta có= = SOMN = OM ON ( đvdt) Chú ý 1: Nếu tam giác OMN không vuông cân O ta tính OH theo cách: y Trong tam giác vng OMN ta có: N 1 (*) Từ để khoảng cách từ điểm O = + 2 OH OA OB đến đường thẳng (d ) ta làm theo cách: H O M x + Tìm giao điểm M , N (d ) với trục tọa độ + Áp dụng cơng thức tính đường cao từ đỉnh góc vng tam giác vng OMN (cơng thức (*)) để tính đoạn OH Bằng cách làm tương tự ta chứng minh công thức sau: THCS.TOANMATH.com 33 Cho M ( x0 ; y0 ) đường thẳng ax + by + c = Khoảng cách từ điểm M đến đường thẳng là: d= ax0 + by0 + c a + b2 Ví dụ 2:Cho đường thẳng mx + ( − 3m ) y + m − =0 (d ) a) Tìm điểm cố định mà đường thẳng (d ) ln qua b) Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d ) lớn c) Tìm m để đường thẳng (d ) cắt trục tọa độ Ox, Oy A, B cho tam giác OAB cân Lời giải: a) Gọi I ( x0 ; y0 ) điểm cố định mà đường thẳng (d ) ln qua với m ta có: mx0 + ( − 3m ) y0 + m − = 0∀m ⇔ m ( x0 − y0 + 1) + y0 − = 0∀m x0 = x0 − y0 + = 1 1 ⇔ Hay ⇔ I ; 2 2 2 y0 − =0 y = b) Gọi H hình chiếu vng góc O lên đường thẳng (d ) Ta có: OH ≤ OI suy OH lớn OI H ≡ I ⇔ OI ⊥ (d ) Đường thẳng qua O có phương trình: y = ax 1 1 1 I ; ∈ OI ⇒ =a ⇔ a =1 ⇒ OI : y =x 2 2 2 Đường thẳng (d ) viết lại sau: mx + ( − 3m ) y + m − =0 ⇔ ( − 3m ) y =−mx + − m THCS.TOANMATH.com 34 đường thẳng (d ) : x − = song song với trục Oy nên khoảng cách từ O đến (d ) 2 m m −1 + Nếu m ≠ đường thẳng (d ) viết= lại: y Điều x+ 3m − 3m − m kiện để (d ) ⊥ OI −1 ⇔ m =− = 3m ⇔ m = Khi khoảng 3m − 2 + Đế ý với m = cách OI = 1 1 + = 2 2 Vậy m = giá trị cần tìm 2 c) Ta giải tốn theo cách sau: + Cách 1: Dễ thấy m = không thỏa mãn điều kiện (Do (d ) không cắt , đường thẳng (d ) cắt Ox, Oy điểm A, B tạo thành tam giác cân OAB , góc AOB = 900 ⇒ ∆OAB vuông cân O Suy Oy ) Xét m ≠ hệ số góc đường thẳng (d ) phải −1 đường thẳng (d ) không qua gốc O m m = 3m − = 1 Ta thấy có giá trị m = thỏa mãn điều kiện ⇔ m = −1 m = 3m − tốn = , m khơng thỏa mãn điều kiện m m −1 Xét m ≠ 0; , đường thẳng (d ) viết= lại: y x+ 3m − 3m − Đường thẳng (d ) cắt trục Ox điểm A có tung độ nên Cách 2: Dễ thấy= m 1− m 1− m m m −1 1− m , đường ;0 ⇒ OA = x+ =0 ⇔ x = ⇒ A 3m − 3m − m m m THCS.TOANMATH.com 35 thẳng (d ) cắt trục Oy điểm có hoành độ nên = y m −1 m −1 m −1 Điều kiện để tam giác OAB ⇒ B 0; = ⇒ OB 3m − 3m − 3m − m = m = 1− m m −1 cân OA = Giá trị = ⇔ ⇒ OB ⇔ m = m 3m − 3m − m = m = không thỏa mãn , đường thẳng (d ) qua gốc tọa độ Kết luận: m = Ví dụ 3) Cho hai đường thẳng (d1 ) : mx + (m − 1) y − 2m = + 0,(d ) : (1 − m) x + my − 4m = +1 a) Tìm điểm cố định mà (d1 ) , (d ) ln qua b) Tìm m để khoảng cách từ điểm P(0;4) đến đường thẳng (d1 ) lớn c) Chứng minh hai đường thẳng cắt điểm I Tìm quỹ tích điểm I m thay đổi d) Tìm giá trị lớn diện tích tam giác I AB với A, B điểm cố định mà ( d1 ) , ( d ) qua Lời giải: a) Ta viết lại (d1 ) : mx + (m − 1) y − 2m + =0 ⇔ m ( x + y − ) + − y =0 Từ dễ dàng suy đường thẳng (d1) qua điểm cố định: A (1;1) Tương tự viết lại (d ) : (1 − m) x + my − 4m + = ⇔ m ( y − x − ) + + x = suy (d ) qua điểm cố định: B ( −1;3) b) Để ý đường thẳng (d1 ) qua điểm cố định: A (1;1) Gọi H hình chiếu vng góc P lên (d1 ) khoảng cách từ A đến (d1 ) PH ≤ PA Suy khoảng cách lớn PA THCS.TOANMATH.com 36 P ≡ H ⇔ PH ⊥ ( d1 ) Gọi = y ax + b phương trình đường thẳng qua +b = a.0= b suy phương trình đường P ( 0;4 ) ,A (1;1) ta có hệ : ⇒ a.1 + b = a =−3 thẳng PA : y = −3 x + Xét đường thẳng (d1 ) : : mx + (m − 1) y − 2m + = Nếu m = ( d1 ) : x − =0 không thỏa mãn điều kiện Khi m ≠ thì: m 2m − Điều kiện để (d1 ) ⊥ PA x+ m −1 1− m m ( −3) =−1 ⇔ m = 1− m ( d= 1) : y suy hai đường c) Nếu m = ( d1 ) : y − =0 ( d ) : x + = thẳng ln vng góc với cắt I ( −1;1) Nếu m = ( d1 ) : x − =0 ( d ) : y − = suy hai đường thẳng ln vng góc với cắt I (1;3) Nếu m ≠ {0;1} ta viết lại m 2m − m −1 4m − ( d= Ta thấy x+ x+ 2): y m m m −1 1− m m m − (d1) (d2) = −1 nên ( d1 ) ⊥ ( d ) I − m m Do hai đường thẳng cắt điểm I ( d= 1) : y Tóm lại với giá trị m hai đường thẳng ( d1 ) , ( d ) ln vng góc A B H K cắt điểm I Mặt khác theo câu a) ta có ( d1 ) , ( d ) qua điểm cố định A, B suy tam giác I AB vuông A Nên I nằm đường tròn đường kính AB THCS.TOANMATH.com 37 d) Ta có AB = ( −1 − 1) + ( − 1) 2 = 2 Dựng IH ⊥ AB 1 AB AB S ∆I AB =IH AB ≤ IK AB = AB = = Vậy giá trị lớn 2 2 diện tích tam giác IAB IH = IK Hay tam giác IAB vuông cân I Ứng dụng hàm số bậc chứng minh bất đẳng thức tìm GTLN, GTNN Ta có kết quan trọng sau: + Xét hàm số = y f ( x= ) ax + b với m ≤ x ≤ n GTLN, GTNN hàm số đạt x = m x = n Nói cách khác: f ( x) = { f ( m ) ; f ( n )} max f ( x) = max { f ( m ) ; f ( n )} Như m≤ x ≤ n m≤ x ≤ n để tìm GTLN, GTNN hàm số = y f ( x= ) ax + b với m ≤ x ≤ n ta cần tính giá trị biên f ( m ) , f ( n ) so sánh hai giá trị để tìm GTLN, GTNN + Cũng từ tính chất ta suy ra: Nếu hàm số bậc = y f ( x= ) ax + b có f ( m ) , f ( n ) ≥ f ( x ) ≥ với giá trị x thỏa mãn điều kiện: m≤ x≤n Ví dụ 1: Cho số thực ≤ x, y, z ≤ Chứng minh rằng: ( x + y + z ) − ( xy + yz + zx ) ≤ Lời giải: Ta coi y, z tham số, x ẩn số bất đẳng thức cần chứng ( − y − z ) x + ( y + z ) − yz − ≤ f ( ) ≤ Thật ta f ( x ) ≤ ta cần chứng minh: f ( ) ≤ minh viết lại sau: f ( x) = Để chứng minh có: THCS.TOANMATH.com 38 + f ( ) = ( y + z ) − yz − = ( y − )( − z ) ≤ với y, z thỏa mãn: ≤ y, z ≤ + f ( ) =2 ( − y − z ) + ( y + z ) − yz − =− yz ≤ với y, z thỏa mãn: ≤ y, z ≤ Từ ta suy điều phải chứng minh: Dấu xảy ( x; y; z ) = ( 0;2;2 ) hốn vị số Ví dụ 2: Cho số thực không âm x, y, z thỏa mãn điều kiện: x+ y+z = Tìm GTLN biểu thức: P = xy + yz + zx − xyz Lời giải: x+ y+z Ta Khơng tính tổng qt ta = giả sử z ( x, y, z ) ⇒ z ≤ = 3 ( x + y) có ≤ xy ≤ (1 − z ) = 4 P = xy (1 − z ) + ( x + y ) z = xy (1 − z ) + z (1 − z ) Ta coi z tham số xy ẩn số f ( xy ) = xy (1 − z ) + z (1 − z ) hàm số bậc xy với (1 − z ) ≤ xy ≤ Để ý rằng: − z > suy hàm số f ( xy ) = xy (1 − z ) + z (1 − z ) đồng biến Từ suy (1 − z )2 1− z) −2 z + z + ( + z (1 − z ) = = f ( xy ) ≤ f =(1 − z ) 4 1 1 7 1 1 Dấu xảy − z− z+ ≤ − z − z + = 27 108 27 3 27 x= y= z= Ví dụ 3: Cho số thực dương a, b, c thỏa mãn điều kiện: a + b + c = Chứng minh rằng: ( a + b + c ) − ( a + b3 + c3 ) ≤ THCS.TOANMATH.com 39 ... hàm số f ( t ) nghịch biến Suy f ( t ) ≥ f a ( 3a − 1) ≥ = Đẳng thức xảy a= b= c= Vấn đề 2: HÀM SỐ BẬC HAI Kiến thức cần nhớ Hàm số y = ax ( a ≠ ) : Hàm số xác định với số. .. = xy (1 − z ) + z (1 − z ) Ta coi z tham số xy ẩn số f ( xy ) = xy (1 − z ) + z (1 − z ) hàm số bậc xy với (1 − z ) ≤ xy ≤ Để ý rằng: − z > suy hàm số f ( xy ) = xy (1 − z ) + z (1 − z ) đồng... IAB vuông cân I Ứng dụng hàm số bậc chứng minh bất đẳng thức tìm GTLN, GTNN Ta có kết quan trọng sau: + Xét hàm số = y f ( x= ) ax + b với m ≤ x ≤ n GTLN, GTNN hàm số đạt x = m x = n Nói cách