1. Trang chủ
  2. » Thể loại khác

de thi thu thpt quoc gia mon toan 13

24 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 1,41 MB

Nội dung

VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM KỲ THI TRUNG HỌC PHỔ THƠNG QUỐC GIA NĂM 2020 Bài thi: TỐN Thời gian làm bài: 120 phút, không kể thời gian phát đề ĐỀ ÔN THI SỐ 13 Câu Trong mặt phẳng tọa độ Oxy, đường thẳng d qua A 1;1 có vectơ phương u  2;3 có phương trình tham số là: x  1 t y  3t  x   2t  y   3t A  x   t y  3t B   x  2t  y  3t C  D  Câu Cho hình cầu đường kính 2a Mặt phẳng (P) cắt hình cầu theo thiết diện hình trịn có bán kính a Tính khoảng cách từ tâm hình cầu đến mặt phẳng (P) A a B a C a 10 D a 10 Câu Trong mặt phẳng tọa độ Oxy, đường trịn (C) có tâm I  4;3 , tiếp xúc trục Oy có phương trình là: A x  y  x  y   B  x  4   y  3  16 C  x  4   y  3  16 D x  y  8x  y  12  2 2 Câu Số đỉnh hình bát diện là: A B C 10 D 12 Câu Tìm họ nguyên hàm F(x) hàm số f  x   x3  x  A F  x   x x3   C B F  x   x3 C F  x   x   x  C x4 x2   x  C D F  x   3x3  C Câu Đạo hàm hàm số y  ln 1  x2  là: A 2x x 1 B 2 x x2 1 C x 1 Câu Cho hàm số y  f  x  liên tục xác định x  y' 1   D có bảng biến thiên sau:  + x  x2  y Facebook: Học VietJack  Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Khẳng định sau sai? A Hàm số đồng biến khoảng  1;3 B Hàm số nghịch biến khoảng  3;   C Hàm số nghịch biến khoảng  ; 1 D Hàm số đồng biến khoảng  0;6  Câu Cho hình chóp S.ABCD có đáy hình bình hành Giao tuyến (SAB) (SCD) là: A Đường thẳng qua S song song với AD B Đường thẳng qua S song song với CD C Đường SO với O tâm hình bình hành D Đường thẳng qua S cắt AB Câu Trong không gian với hệ trục tọa độ Oxyz, cho điểm A 1; 3;2 , B 0;1; 1  G  2; 1;1 Tọa độ điểm C cho tam giác ABC nhận G trọng tâm là: A C 1; 1;   B C  3; 3;   C C  5; 1;  D C 1;1;0  Câu 10 Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A 1; 2; 3 , B  1;4;1  đường thẳng d : x2 y2 z 3   Phương trình phương trình đường 1 thẳng qua trung điểm đoạn AB song song với d? x y 1 z 1  B  :  x y 1 z 1  1 D  : A  :  C  :  x y2 z2  1 x 1 y 1 z 1   1 Câu 11 Trong mặt phẳng tọa độ hình bên, số phức z   4i biểu diễn điểm điểm A, B, C, D? A Điểm A B Điểm B C Điểm C D Điểm D Câu 12 Cho cấp số cộng  un  , biết u1  5, d  Số 81 số hạng thứ bao nhiêu? A 100 B 50 C 75 D 44 Câu 13 A, B hai biến cố xung khắc Biết P  A   , P  B   Tính P  A  B  Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM A 12 Học trực tuyến: KHOAHOC.VIETJACK.COM B 12 C Câu 14 Cho hàm số y  f  x  xác định D \ 1 , liên tục khoảng xác định có bảng biến thiên sau:  x y'   + + y  Mệnh đề đúng? A Hàm số đạt cực đại hàm số yCT  C Giá trị cực đại hàm số yCD  x  B Giả trị cực tiểu D Hàm số đồng biến khoảng  0;   Câu 15 Biết đồ thị hàm số y  ax  b qua điểm M(1; 4) có hệ số góc 3 Tích P  ab ? A P  13 B P  21 C P  D P  21 Câu 16 Tính đạo hàm cùa hàm số y  72 x  log  x  A y '  2.7 x ln 7 ln 5x B y '  2.7 x.ln  x ln 2.7 x ln  D y '  ln 5x C y '  2.7 ln  x ln 2x Câu 17 Một bác thợ xây bơm nước vào bể chứa nước Gọi h  t  thể tích nước bơm sau t giây Cho h '  t   3at  bt ban đầu bể khơng có nước Sau giây thể tích nước bể 150m3 Sau 10 giây thể tích nước bể 1100m3 Hỏi thể tích nước bể sau bơm 20 giây bao nhiêu? A 8400m3 B 2200m3 C 6000m3 D 4200m3 Câu 18 Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng  P  : x  23 y  5z  44  0;  Q  : x  my  5z   n  Giá trị m, n để mặt phẳng (P) trùng (Q) là: A m  23, n  45 B m  23, n  45 C m  45, n  23 D m  45, n  23 Câu 19 Cho cấp số cộng  un  biết u5  18 4Sn  S2 n Tìm số hạng u1 cơng sai d cấp số cộng Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM A u1  2; d  Học trực tuyến: KHOAHOC.VIETJACK.COM B u1  2; d  C u1  2; d  D u1  3; d  Câu 20 Phương trình tiếp tuyến đồ thị  C  : y  x3  x điểm M 1;3 là: A y  x  B y  x  C y  7 x  D y  7 x  Câu 21 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt phẳng B mặt phẳng C mặt phẳng D mặt phẳng Câu 22 Gọi A, B, C điểm biểu diễn số phức nghiệm cùa phương trình z  mặt phẳng Oxy Diện tích S tam giác ABC bao nhiêu? A S  B S  C S  D S  3 Câu 23 Cho hàm số y  f  x   ax  bx  c  a   có đồ thị hình bên Tất giá trị m để phương trình f  x   m   có nghiệm phân biệt là: A m  2 B m  1 C m  D m  Câu 24 Cho F  x  nguyên hàm cùa hàm số f  x   x  sin x f    Tìm F  x  x2 A f  x    cos x  2 C f  x   x2 B f  x    cos x  2 x2  cos x D f  x   x2  cos x  2 40 Câu 25 Tìm hệ số số hạng chứa x 31 khai triển  x   x  A C4037 B C 4031 C C 404  D C 402 Câu 26 Khẳng định sau sai?  A y  tan x nghịch biến  0;   B y  cos x đồng biến   ;0   C y  sin x đồng biến   ;0   D y  cot x nghịch biến  0;          Câu 27 Có giá trị nguyên tham số m để phương trình x  m.2 x 1  2m2   có hai nghiệm phân biệt? A B Facebook: Học VietJack C D Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Câu 28 Cho hình hộp ABCD.A'B'C'D' Trên cạnh AA', BB', CC' lấy ba điểm M, N, P cho tỉ số A AM BN C P  ,  ,  Biết mặt phẳng (MNP) cắt cạnh DD Q Tính AA BB CC  D Q DD  6 B C D Câu 29 Cho hàm số f  x   22 x.3sin x Khẳng định sau khẳng định đúng? A f  x    x ln  sin x ln  B f  x    x  2sin x log  C f  x    x log3  sin x  D f  x     x log  Câu 30 Trong không gian với hệ trục tọa độ Oxyz, cho điểm A  1; 2;  , B  3; 2;0  mặt phẳng  P  : x  y  z   Vectơ phương đường thẳng d giao tuyến mặt phẳng (P) mặt phẳng trung trực đoạn AB có tọa độ là: A u  1; 1;0  B u   2;3; 2  C u  1; 2;0  D u   3; 2; 3 Câu 31 Thiết diện qua trục hình nón (N) tam giác vng cân có cạnh góc vng a Tính diện tích tồn phần hình nón (N) A Stp    a2  C Stp   a 2   B Stp   D Stp  1  a2   1   a2  2  Câu 32 Cho hàm số y  f  x   ax3  bx2  cx  d có đồ thị hình bên Đặt y  g  x   f  x  Mệnh đề sau sai hàm g  x? A Đồ thị hàm số g  x  có điểm cực trị B Đồ thị hàm số g  x  có điểm cực tiểu C Đường thẳng y  giao với đồ thị g  x  điểm phân biệt D Đường thẳng y  giao với đồ thị g  x  điểm phân biệt Câu 33 Cho hình chóp S.ABCD có đáy hình chữ nhật với AB  3a, BC  4a , SA 12a SA vng góc với đáy Bán kính R mặt cầu ngoại tiếp hình chóp S.ABCD là: A R  5a B R  17a Facebook: Học VietJack C R  13a D R  6a Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Câu 34 Đội niên xung kích trường THPT gồm 15 học sinh, có học sinh khối 12, học sinh khối 11 học sinh khối 10 Chọn ngẫu nhiên học sinh làm nhiệm vụ Tính xác suất để chọn học sinh có đủ ba khối A 4248 5005 B 757 5005 C 850 1001 D 151 1001 Câu 35 Trong không gian Oxyz, cho mặt cầu  S  :  x  1   y  1   z  1  điểm 2 A  2;3; 1 Xét điểm M thuộc (S) cho đường thẳng AM tiếp xúc với (S), M ln thuộc mặt phẳng có phương trình: A x  y  11  B 3x  y   C 3x  y   D x  y  11  Câu 36 Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh 2a Gọi O giao điểm AC BD Biết hình chiếu vng góc đỉnh S mặt phẳng (ABCD) trung điểm H đoạn OA góc  SD;  ABCD    60 Gọi a góc hai mặt phẳng (SCD) (ABCD) Tính tan A tan   15 B tan   30 12 C tan   10 D tan   30 Câu 37 Có số phức z thỏa mãn z  z   i   2i    i  z ? A B C D Câu 38 Một người muốn có tỉ tiền tiết kiệm sau năm gửi ngân hàng cách năm gửi vào ngân hàng số tiền với lãi suất ngân hàng 8% năm lãi hàng tháng nhập vào vốn Hỏi số tiền mà người phải gửi vào ngân hàng hàng năm (với giả thiết lãi suất không thay đổi) số tiền làm trịn đến hàng nghìn đồng? A 252 436 000 (đồng) (đồng) B 272 631 000 C 252 435 000 (đồng) (đồng) D 272 630 000 Câu 39 Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, có SA vng góc với mặt phẳng (ABCD) Biết SC  a 3, khoảng cách BD SC theo a là: A a B a C a D a Câu 40 Tìm giá trị thực tham số m để đồ thị hàm số y  x3  3mx  có hai điểm cực trị A B cho A, B điểm M 1; 2  thẳng hàng A m   B m  Câu 41 Biết I    ln x  x  1 C m   D m  dx  a 1  ln   b ln Khi a  b bằng: Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM A a  b  16 Học trực tuyến: KHOAHOC.VIETJACK.COM B a  b  16 C a  b  25 16 D a  b  Câu 42 Biết tồn hai giá trị m cho hàm số y  x3  3x2 + m đạt giá trị nhỏ đoạn [-2;3] Tính tổng hai giá trị đó, kết là: A 18 B 24 C 20 D 22 Câu 43 Cho hình chóp tứ giác S.ABCD, đuờng cao SO Biết thiết diện hình chóp cắt mặt phẳng chứa SO, thiết diện có diện tích lớn tam giác cạnh a, tính thể tích khối chóp cho A a3 Câu 44 B : điều Biết log 21  x     m   log 2 a3 12 kiện cần  8m   x2 C a3 đủ D để m a3 phương trình Có nghiệm thuộc  ;  m   a; b Tính 2  T  a  b A T  10 B T  Câu 45 Cho hàm số f  e   0, e f  x e   f   x  dx  e   1 A 2e B D T   C T  4 f  x x  e2 có đạo hàm liên tục 10 1;e thỏa mãn e dx   e Tích phân  f  x  dx bằng: C e  2 D e2  Câu 46 Trong mặt phẳng tọa độ Oxy, cho hình thoi ABCD có tâm I  2;1 AC  2BD Điểm M  0;  thuộc đường thẳng AB, điểm N  0;7  thuộc đường thẳng CD Tìm tọa độ  3 diểm B, biết B có hồnh độ dương A B  1; 1 B B 1;1 C B 1; 1 D B  1;1 Câu 47 Cho hình chóp tứ giác S.ABCD có đáy hình vng cạnh a Tam giác (SAD) cân S mặt bên (SAD) vng góc với mặt phẳng đáy Biết thể tích khối chóp S.ABCD A h  a a Tính khoảng cách h từ B đến mặt phẳng (SCD) B h  a C h  a D h  a Câu 48 Cho số phức z thỏa mãn z   i  z   i  13 Tìm giá trị nhỏ m biểu thức z   i A m  B m  13 13 Facebook: Học VietJack C m  13 13 D m  13 Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M  2; 2;1 , A 1;2; 3  đường thẳng d : x 1 y  z   Tìm vectơ phương u dường thẳng  qua M, 2 1 vng góc với đường thẳng d, đồng thời cách điểm A khoảng lớn A u   4; 5; 2  B u  1;0;  C u   8; 7;  D u  1;1; 4  Câu 50 Cho đồ thị hàm số y  f  x  có đồ thị hình bên Có giá trị nguyên tham số m để hàm số y  f  x  100   m2 có điểm cực trị? A B C D Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM ĐÁP ÁN B A B A B A D B C 10 C 11 D 12 D 13 A 14 A 15 D 16 C 17 A 18 A 19 A 20 B 21 D 22 D 23 A 24 A 25 A 26 A 27 A 28 A 29 A 30 D 31.B 32 C 33 C 34 C 35 C 36 D 37 C 38 A 39 A 40 A 41 C 42 C 43 B 44 D 45 B 46 C 47 B 48 A 49 A 50 C HƯỚNG DẪN GIẢI CHI TIẾT Câu Chọn đáp án B Đường thẳng d qua A (1; 1) có vectơ phương u   2;3 có phương trình tham số là:  x   2t   y   3t Câu Chọn đáp án A Bán kính hình cầu cho R  a Khoảng cách từ tâm hình cầu đến mặt phẳng a 3  a  d  O;  P    R  r  2 (P) là: a Câu Chọn đáp án B Đường tròn (C) tiếp xúc với trục Oy nên R  d  I ; Oy   4  Vậy đường trịn (C) có phương trình:  x  4   y  3  16 2 Câu Chọn đáp án A Hình bát diện có đỉnh Câu Chọn đáp án B Ta có: x  x  1 dx  x4 x2   x  C Câu Chọn đáp án A  x   y'   Ta có: 1 x 2 x 2x  1 x x 1 Câu Chọn đáp án D Dựa vào bảng biến thiên ta thấy: + Hàm số đồng biến (-1;3) => A Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM + Hàm số nghịch biến khoảng  ; 1  3;    B, C Do hàm số khơng đồng biến khoảng (0;6) => D sai Câu Chọn đáp án B S điểm chung hai mặt phẳng (SAB) (SCD)  AB   SAB   Mặt khác CD   SCD   AB //CD  Nên giao tuyến hai mặt phẳng (SAB) (SCD) đường thẳng St qua điểm S song song với CD Câu Chọn đáp án C G trọng tâm tam giác ABC nên ta có:  x A  xB  xC  xG   xC  3xG  x A  xB   y A  yB  yC   xG   yC  yG  y A  yB    z  3z  z  z G A B  C  z A  z B  zC  x G    xC    yC  1  C  5; 1;  z   C Câu 10 Chọn đáp án C Gọi I trung điểm AB  I  0;1; 1 Đường thẳng d có vectơ chi phương u  1; 1;  Đường thẳng qua I  0;1; 1 song song với d nên nhận u d  1; 1;2  làm vectơ chi phương Phương trình đường thẳng là: x y 1 z 1   1 Câu 11 Chọn đáp án D Ta có: z   4i Biểu diễn điểm có tọa độ x  3; y  4  D  3;  Câu 12 Chọn đáp án D Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Ta có un  u1   n  1 d  81  5   n  1  n  44 Vậy 81 số hạng thứ 44 Câu 13 Chọn đáp án A Ta có: P  A  B   P  A   P  B   12 Câu 14 Chọn đáp án A Hàm số đạt cực đại x  giá trị cực đại yCÑ  nên đáp án A đúng, đáp án B, C sai Hàm số đồng biến khoảng  ;  1;   nên đáp án D sai Câu 15 Chọn đáp án D Vì y  ax  b có hệ số góc 3 nên a  3 Mà y  ax  b qua M 1;4  nên y  3x  b   3.1  b  b  Do P  a.b  3.7  21 Câu 16 Chọn đáp án C Ta có: y  72 x  log2  log2 x  y  2.72 x ln  x ln Câu 17 Chọn đáp án A Ta có: h  t     3at  bt  dt  at  bt  C Ban đầu bể khơng có nước nên: h     C   h  t   at  bt Sau giây thể tích nước bể 150m3  h  5  150  125a  25b  150  10a  b  12 Sau 10 giây thể tích nước bể 1100m3  h 10   1100  1000a  50b  1100  20a  b  22 Giải hệ ta Vậy thể tích nước bể sau bơm 20 giây h  20   8400m3 Câu 18 Chọn đáp án A 4 Để mặt phẳng  P   Q    m 1 n   23 44 Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM m  23  m  23   1  n  n  45  44 Câu 19 Chọn đáp án A Ta có: u5  18  u1  4d  18 1 Với n  nên 4S5  S10   5u1   5.4  10.9 d   10u1  d  2u1  d   u1  4d  18 u1   d  2u1  d  Khi ta có hệ phương trình  Câu 20 Chọn đáp án B Ta có: y  3x  x  k  y 1  Phương trình tiếp tuyến M(l;3) là: d : y  y0  x  x0   y0  y   x  1   y  x  Câu 21 Chọn đáp án D Hình lăng trụ tam giác có mặt phẳng đối xứng Câu 22 Chọn đáp án D z  Ta có: z   z     z    z  z       z  1  3i Tọa độ điểm biểu diễn số phức là: A  2;0  , B  1;  , C  1;   Ta có: BC   0; 2   BC  Đường thẳng qua hai điểm B, C là: x  1  d  A; BC   Diện S ABC  tích tam giác ABC là: 1 d  A; BC  BC  3.2  3 2 Câu 23 Chọn đáp án A Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM  f  x  f  x   Hàm số y  f  x      f  x  f  x   Cách vẽ đồ thị hàm số y  f  x  sau:  Giữ nguyên đồ thị (C) phía trục Ox ứng với f  x    Bỏ phần đồ thị phía trục Ox  Lấy đối xứng phần bỏ qua Ox ứng với f  x   Hợp hai phần đồ thị đồ thị hàm số y  f  x  cần vẽ hình bên Ta có: f  x   m    f  x   m  * Số nghiệm phương trình (*) số giao điểm đồ thị y  f  x  với đường thẳng y  m  Dựa vào đồ thị để đường thẳng y  m  cắt đồ thị hàm số y  f  x  điểm phân biệt  m 1   m  2 Câu 24 Chọn đáp án D Ta có: F  x     x  sin x dx  x2  cos x  C Mà F      cos  C   C   F  x   x2  cos x  2 Câu 25 Chọn đáp án A 40 k 40 40 1 Ta có:  x     C40k x 40k     C40k x 403k x    x  k 0 k 0 Số hạng tổng quát khai triển là: Tk 1  C40k x 403k Số hạng chứa x31 khai triển tương ứng với 40  3k  31  k  Vậy hệ số cần tìm là: C403  C4037 (theo tính chất tổ hợp Cnk  Cnn  k ) Câu 26 Chọn đáp án A  Trên khoảng  0;  hàm số y  tan x đồng biến  2 Câu 27 Chọn đáp án A Ta có: x  m.2 x 1  2m2    x  m.2 x  2m   Đặt t  x , t  0, ta phương trình: 2cos x  9sin x   1 Phương trình cho có hai nghiệm phân biệt phương trình (l) có hai nghiệm dương phân biệt Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM   m    10 m      m    10      S    2m      m   10 P    m   2m      m  Vì m   m  giá trị ngun để phương trình có nghiệm phân biệt Câu 28 Chọn đáp án A Cách 1:  BBC C  / /  AADD   Ta có  MNP    BBC C   NP  NP / / MQ   MNP    AADD   MQ  AABB  / /  CC DD    MNP    AABB   MN  MN / / PQ   MNP    CC DD   PQ Suy mặt phẳng (MNP) cắt hình hộp theo thiết diện hình bình hành MNPQ 1   BN  BB  AA BM   Trong mặt phẳng  ABBA  , gọi E  MN  BA Mặt khác:  AM  AM  AA  Khi BN đường trung bình tam giác AME => N trung điểm đoạn thẳng ME Trong mặt phẳng (MNPQ), gọi F  EP  MQ => NP đường trung bình tam giác MEF  NP  MF Mà tứ giác MNPQ hình bình hành nên  NP  MQ  Q trung điểm MF hay DQ FQ DQ DQ 1         AM FM 2 DD AA Mặt khác: DQ / / AM  Cách 2: áp dụng tỷ số: FQ  FM BN D Q AM C P D Q 1 D Q          BB D D AA C C DD  DD  Câu 29 Chọn đáp án A Ta có: f  x    22x.3sin x  * Xét đáp án A: Lấy logarit số e hai vế ta *  ln  22 x.3sin x   ln1  ln 2x  ln 3sin x   x ln  sin x ln  Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Câu 30 Chọn đáp án D n P  u d AB Mặt phẳng (P) có vectơ pháp tuyến n P   1;3; 1 Mặt phẳng trung trực đoạn AB nhận vectơ AB   2;0; 2  làm vectơ pháp tuyến Ta có: n P   1;3; 1     n P  , AB    6; 4;6  AB   2;0; 2      P    Q  nên nhận  n P  , AB    6; 4;  làm vectơ phương u   3; 2; 3 làm vectơ phương Câu 31 Chọn đáp án B Giả sử SAB thiết diện qua trục hình nón (như vẽ) hình Theo giả thiết ta có tam giác SAB vuông cân S Đường sinh l  SA  SB  a Do bán kính r  OA  AB SA2  SB a   2 Diện tích xung quanh hình nón: S xq   rl   a  a2 a  2 Diện tích đáy S   r   a2 Vậy diện tích tồn phần hình nón (N) là: Stp  S xq  S d   a2 2   a2   a2   1 Câu 32 Chọn đáp án C  f  x  f  x   Hàm số y  f  x      f  x  f  x   Cách vẽ đồ thị hàm số y  f  x  sau:  Giữ nguyên đồ thị (C) phía trục Ox ứng với f  x   Bỏ phần đồ thị phía trục Ox  Lấy đối xứng phần bỏ qua Ox ứng với f  x   Hợp phần đồ thị đồ thị hàm số y  f  x  cần vẽ hình bên Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Đồ thị hàm số y  f  x  có điểm cực trị có điểm cực tiểu, điểm cực đại => Đáp án A, B Đường thẳng y = giao với đồ thị hàm số điểm phân biệt => Đáp án C sai Đường thẳng y = giao với đồ thị hàm số điểm phân biệt => Đáp án D Câu 33 Chọn đáp án C Bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là: R SA2  AB  BC 2 12a    3a    4a   2  13a Câu 34 Chọn đáp án C Chọn ngẫu nhiên học sinh từ 15 học sinh có C156 (cách chọn) hay n  Q   C156  5005 Gọi A: “Chọn học sinh có đủ ba khối”  A : “Chọn học sinh không đủ ba khối” Trường hợp 1: học sinh chọn khối có: C66 cách Trường hợp 2: học sinh chọn khối lớp 12 11 có: C96 cách Trường hợp 3: học sinh chọn khối lớp 12 10 có: C106  C66 cách Trường hợp 4: học sinh chọn khối lớp 11 10 có: C116  C66 cách Suy n  A   C96  C106  C116  C66  755 Do P  A  Vậy xác suất cần tìm P  A    P  A      151 n A n Q  1001 850 1001 Câu 35 Chọn đáp án C Mặt cầu (S) có tâm I  1; 1; 1 , bán kính R  Ta có điểm A nằm mặt cầu (S) Lấy M  x0 ; y0 ; z0   S  Khi IM   x0  1; y0  1; z0  1 ; AM   x0  2; y0  3; z0  1   IM  R   AM IM  Ta có:   x0  12   y0  12   z0  12    x0  1 x0     y0  1 y0  3   z0  1 z0  1  Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM  x0  12   y0  12   z0  12   2  x0  1   x0  1   y0  1   y0  1   z0  1  * Từ (*) ta có x3  x2  1  m  x  m  Vậy điểm M  x0 ; y0 ; z0  nằm mặt phẳng 3x  y   Cách 2: Ta có: AI  5, AM  AI  R  Phương trình mặt cầu (S’) tâm A  2;3; 1 , bán kính R  AM  là:  x  2   y  3   z  1 2  16 Khi M thuộc mặt phẳng  P    S    S  thỏa mãn hệ phương trình: 2  x  12   y  12   z  12   x  y  z   x  y  z    2 2 2  x     y  3   z  1  16  x  y  z   x  y  z   x  y  z   x  y  z  x  y    x  y   Vậy điểm M nằm mặt phẳng 3x  y   Câu 36 Chọn đáp án D Ta có: HD hình chiếu SD lên mặt phẳng (ABCD) Góc SD mặt phẳng (ABCD) góc SDH  60 Kẻ HK  CD suy  x2  x 2  x2  Góc hai mặt phẳng (SCD)   góc x    SKH   Ta có: OD  BD AC a a 2; OH=  SH  HD.tan SDH  a 10 a 30 tan 60  2 Mặt khác: HK / / AD   HK  HK CH   AD CA 3AD 3a  SH Vậy: tan    HK a 30  30 3a Câu 37 Chọn đáp án C Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Ta có: z  z   i   2i    i  z  z  z   i   z   z   i 1  z  6 Lấy môđun hai vế ta được: z Đặt:    ta t t  6  12   12  5 z    z  2  5t    t   2  t  t  12t  37   26t  4t   t  12t  11t  4t     t  1  t  11t    * Bấm máy tính phương trình (*) có nghiệm phân biệt dương Ứng với giá trị t dương vào phương trình (1) ta tìm số phức z Vậy có số phức z thỏa mãn Câu 38 Chọn đáp án A Áp dụng công thức vay gửi tiền hàng kỳ: A  S n r n 1  r  1  r   1 A số tiền vay gửi hàng kỳ; Sn số tiền nợ nhận r lãi suất kỳ; n kỳ hạn Số tiền hàng năm người phải gửi vào ngân hàng là: A Sn r 1  r  1  r  n  1    200000000  8%  252.436.000 1  8%  1  8%   1 Câu 39 Chọn đáp án A Gọi O  AC  BD Ta có: AC  BD    BD   SAC  SA  BD  Kẻ OI  SC  I  SC  Mặt khác BD  OI BD   SAC   OI đường vng góc chung  d  BD; SC   OI Kẻ AK  SC  K  SC  OI đường trung bình tam giác AKC  OI  AK Ta có: AC  AB  a  SA  SC  AC  Xét tam giác SAC vuông A: AK  Facebook: Học VietJack a   a  SA AC SA2  AC 2   a a.a  a2  a   a Youtube: Học VietJack VIETJACK.COM  OI  Học trực tuyến: KHOAHOC.VIETJACK.COM AK a a  Vậy khoảng cách BD SC 6 Câu 40 Chọn đáp án A Tập xác định: D  x   y  Ta có: y  3x  6mx; y '     x  2m  y  4m  Để đồ thị hàm số có hai điểm cực trị A B  y '  có nghiệm phân biệt * 2m   m  Tọa độ hai điểm cực trị A  0;2 , B  2m; 4m3    AM  1; 4  ; AB   2m; 4m3  Ta có điểm A, B, M thẳng hàng m   L  2m 4m3   m  m3  m  m      4  m   TM  Câu 41 Chọn đáp án C  u   ln x du  dx    x Đặt: dv  dx    v   x      x 1 Khi đó:  ln x I  x 1 1  ln 3  1   ln  dx         ln x  ln x    dx  x  x  1  x x 1  3   ln 3 25 a  2   ln  ln  ln  1  ln 3  ln    a b  4 16  b  Câu 42 Chọn đáp án C Hàm số g  x   x3  3x  m xác định liên tục đoạn  2;3  x    2;3 Ta có: g '  x   3x  x     x    2;3  g  2   m  20  min f  x    m  20 ; m   f  x     g 0  m   2;3    2;3 Ta có:   g  2  m  m  m  20   g  m    Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM    m  20      m    m  22     m   m        m  20   m  m  20   Vậy tổng hai giá trị m thỏa mãn yêu cầu toán 22   20 Câu 43 Chọn đáp án B Kẻ đường thẳng qua O cắt AB, CD H, Ta thiết diện tam giác SHK tam giác SHK S S SHK  K cân SO.HK , SO không đổi nên SSHK max  HK max Đặt KD  x; x  0; b Gọi cạnh hình vng b Mà HK  KI  IH  b   b  x  x   K  D Do đó: HKmax  b đạt  x  b  K  C Ta có: SSHK lớn tam giác SKH Do ta BD  a  b  a  b  a Diện tích hình vng ABCD là: S ABCD  a  a2 BD a  b      ; SO  2   Vậy thể tích hình chóp: VS ABCD 1 a a a3  SO.S ABCD   3 2 12 Câu 44 Chọn đáp án D Điều kiện: x  Ta có: log 21  x     m   log 2  8m   x2  4log 22  x     m  5 log  x    8m   1   Đặt log  x    t với x   ;4   t   1;1    Vậy (1)  4t   m  5 t  8m    Facebook: Học VietJack t  5t  m t   * Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM Số nghiệm phương trình (*) số giao điểm đồ thị hàm số y  t  5t  với đường t  thẳng y  m Xét hàm f  t   Ta có: f '  t   t  5t  t   1;1 t  t  4t  11  t    0; t   1;1 Hàm số f  t  nghịch biến đoạn  1;1 Bảng biến thiên: 1 t f  t   f t  ym 5 5 Từ bảng biến thiên  Để phương trình có nghiệm thuộc  ;  5  m  2  a  5 10    ab   b   Câu 45 Chọn đáp án B e Xét:  f  x x dx   e u  f  x    du  f   x  dx  Đặt:    dv  dx v  ln x x  Khi e  f  x x dx  ln x f  x   e e e 1   ln x f   x  dx    ln x f   x  dx e   ln x f   x  dx  e  e e e e 2 Mặt khác:   ln x  dx   x  ln x    2 ln xdx   x  ln x   x ln x  x   e  1 e e e 1 e Do đó:   f   x   dx  2 ln xf   x  dx    ln x  dx     f   x   ln x  dx  Facebook: Học VietJack 2 Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM  f   x   ln x, f  x   x ln x  x  C Vì f  e   nên C  Suy ra: f  x   x ln x  x e Vậy:  e  x2 x2 x2  f  x  dx    x ln x  x  dx   ln x    2  e   e2 Câu 46 Chọn đáp án C Gọi N' điểm đối xứng với N qua I nên N' thuộc AB Khi I trung điểm NN   N   4; 5 Đường thẳng AB qua N '  4; 5 nhận trình là: MN    3; 4  làm vectơ phương có phương x4 y5   x  y   4 Gọi H hình chiếu I lên đường thẳng AB Ta có: IH  d  I ; AB    1 44  33  Mặt khác AC  2BD  AI  2BI Đặt BI  a  AI  2a Khi  1  2 2 IH IA IB 1 1  2    a   IB  2 a  2a  4a Gọi B   3t; 5  t   AB; t     3 Khi đó: IB    3t     4t  6  2 t  1   25t  60t  35     B 1; 1 t    l   Câu 47 Chọn đáp án B Gọi H trung điểm AD  SH  AD  SH   ABCD  Diện tích hình vuông ABCD là:  S ABCD  AB  a   2a Thể tích khối chóp S.ABCD là: 3V VS ABCD  SH S ABCD  SH  S ABCD S ABCD 4a 3  2a  2a Ta có: AB //  SCD   d  B,  SCD    d  A,  SCD   d  A;  SCD   d  H ;  SCD    AB  HB Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM  d  A;  SCD    2d  H ;  SCD   Ta có: CD   SAD  Kẻ HK  SD  HK   SCD   d  H ;  SCD    HK Xét tam giác SHD vuông H: HK   d  B;  SCD    HK  SH HD SH  HD 2  2a a 2  2a  a 2      2a 4a Câu 48 Chọn đáp án A Gọi M  x; y  điểm biểu diễn số phức z  x  yi với x, y  mặt phẳng tọa độ Ox Ta có: z   i  z   i  13   x     y  1   x  1   y  1  13 2 2  MA  MB  13 với A  2; 1 B  1;1 Mà AB  13  MA  MB  AB  M  x; y  thuộc đoạn thẳng AB Xét P  z   i   x     y  1  MC với C  2;1 2 Do Pmin  BC  M  B Câu 49 Chọn đáp án A Gọi H hình chiếu vng góc A lên Δ, ta có d  A;    AH Mặt khác, M   nên AH  AM Do đó, AH max  AM  H  AM Khi đó, đường thẳng Δ qua M, vng góc với đường thẳng d vng góc với đường thẳng AM nên có vectơ phương u  u d ; AM    4; 5; 2  Câu 50 Chọn đáp án C Hàm số y  f  x  100  có đồ thị đồ thị hàm số y  f  x  tịnh tiến sang trái 100 đơn vị Dựa vào đồ thị ta thấy đồ thị hàm số y  f  x  có điểm cực trị Khi tịnh tiến sang trái 100 đơn vị số điểm cực số y  f  x  100  điểm cực trị trị hàm Để đồ thị hàm số y  f  x  100  m2 có điểm cực trị đường thẳng y  m2 cắt đồ thị y  f  x  điểm phân biệt (Khơng tính điểm cực trị đồ thị hàm y  f  x  Facebook: Học VietJack Youtube: Học VietJack VIETJACK.COM Học trực tuyến: KHOAHOC.VIETJACK.COM  6  m2  2 Dựa vào đồ thị:     m2   m  Do m   m2   m  2 Vậy có giá trị tham số m thỏa mãn Facebook: Học VietJack Youtube: Học VietJack ... 48 Cho số phức z thỏa mãn z   i  z   i  13 Tìm giá trị nhỏ m biểu thức z   i A m  B m  13 13 Facebook: Học VietJack C m  13 13 D m  13 Youtube: Học VietJack VIETJACK.COM Học trực... Ox Ta có: z   i  z   i  13   x     y  1   x  1   y  1  13 2 2  MA  MB  13 với A  2; 1 B  1;1 Mà AB  13  MA  MB  AB  M  x; y  thu? ??c đoạn thẳng AB Xét P  z... 1;1 Hàm số f  t  nghịch biến đoạn  1;1 Bảng biến thi? ?n: 1 t f  t   f t  ym 5 5 Từ bảng biến thi? ?n  Để phương trình có nghiệm thu? ??c  ;  5  m  2  a  5 10    ab 

Ngày đăng: 14/12/2022, 22:57