1. Trang chủ
  2. » Giáo Dục - Đào Tạo

bai giang phuong trinh luong giac co ban

16 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 326,03 KB

Nội dung

BÀI GIẢNG PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN Mục tiêu: Nắm vững phương trình lượng giác cách giải  Kiến thức + Biết cách áp dụng cơng thức nghiệm phương trình lượng giác + Vận dụng để giải trường hợp mở rộng phương trình lượng giác I LÍ THUYẾT TRỌNG TÂM Phương trình sin x = a  Nếu a  : Phương trình vô nghiệm  Nếu a  Đặt a  sin  a  sin   , phương trình tương đương với  x    k 2 sin x  sin    k    x      k 2  x     k 360 sin x  sin     k    x  180     k 360  x  arcsin a  k 2 sin x  a   k    x    arcsin a  k 2 Tổng quát:  f  x   g  x   k 2 sin f  x   sin g  x    k    f  x     g  x   k 2 Các trường hợp đặc biệt  sin x   x   sin x  1  x    sin x   x  k k    k 2    k 2 k   k   Phương trình cos x  a  Nếu a  : Phương trình vơ nghiệm  Nếu a  Đặt a  cos  a  cos   , phương trình tương đương với cos x  cos   x    k 2 k   cos x  cos    x      k 360  k    cos x  a  x   arccos a  k 2 k   Tổng quát: cos f  x   cos g  x   f  x    g  x   k 2 k   Các trường hợp đặc biệt   Trang   k    cos x   x  k 2  cos x  1  x    k 2  cos x   x    k k   k   Phương trình tan x  a Điều kiện cos x   tan x  tan   x    k  k     tan x  tan    x     k 180  k     tan x  a  x  arctan a  k  k    Tổng quát: tan f  x   tan g  x   f  x   g  x   k  k    Phương trình cot x = a Điều kiện sin x   cot x  cot   x    k  k     cot x  cot    x     k 180  k     cot x  a  x  arc cot a  k  k    Tổng quát: cot f  x   cot g  x   f  x   g  x   k  k    TOANMATH.com Trang   SƠ ĐỒ HỆ THỐNG HÓA Điều kiện: x    k , k   Đặt a  tan   đặc biệt  x    k  không đặc biệt  x  arctan a  k Phương trình vơ nghiệm Trường hợp 2: a  Đặt a  sin   đặc biệt  x    k 2   x      k 2 k   Trường hợp 1: a  tan x = a Trường hợp 1: a  sin x = a Phương Phương trình vô nghiệm Trường hợp 2: a  cos x  a Đặt a  cos  trình lượng  đặc biệt giác  x    k 2   x    k 2 k   cot x = a  không đặc biệt  x  arcsin a  k 2   x    arcsin a  k 2 k    không đặc biệt  x  arccos a  k 2   x   arccos a  k 2 k   Điều kiện x  k , k   Đặt a  cot   đặc biệt  x    k  không đặc biệt  x  arc cot a  k II CÁC DẠNG BÀI TẬP Dạng 1: Phương trình sin x = a Ví dụ mẫu TOANMATH.com Trang     Ví dụ Giải phương trình 2sin  x    1 4  Hướng dẫn giải 1  sin  3x        sin  x    sin  4 4       2    3 x    k 2 3 x     k 2  x  36  k    k   3 x        k 2 3 x        k 2  x  5  k 2    3 36  2   x  36  k Vậy phương trình cho có nghiệm  k    x  5  k 2  36 2  Ví dụ Giải phương trình sin  x   7     sin  x        2  Hướng dẫn giải    sin  3x   2  2  2  2       sin  x     sin  x    sin  x          2 2  8  3 x   x   k 2  x   15  k   3 x  2     x  2   k 2  x  11  k      60  k   8   x   15  k Vậy phương trình cho có nghiệm  k    x  11  k  60     Ví dụ Tìm số nghiệm nguyên dương phương trình sin  x  x  16 x  80   4  Hướng dẫn giải        x  x  16 x  80  k Ta có sin  x  x  16 x  80    4   3x  x  16 x  80  4k  x  16 x  80  x  4k 3 x  4k 3 x  4k     2k  10 2 x  9 x  16 x  80  x  24kx  16k  3k   Xét x  2k  10 18k  90  9k    98 98  9x     3k    3k  3k  3k  3k  TOANMATH.com Trang   Vì x  * nên x  *  3k   Ư  98   1; 2; 7; 14; 49; 98  x  * Lại có   3k    3k   1; 2;7;14; 49;98  k  1;3;17 2k  10   k     Với k  x  12 (thỏa mãn 3x  4k )  Với k  x  (thỏa mãn x  4k )  Với k  17 x  12 (khơng thỏa mãn x  4k ) Vậy phương trình cho có hai nghiệm nguyên dương x  4;12 Bài tập tự luyện dạng Câu 1: Cho phương trình sin  x     m2 , m tham số Với giá trị m phương trình có m 1 nghiệm? A m   B m   C m   D Không tồn giá trị m Câu 2: Phương trình sin x  A x  C x    có nghiệm thỏa mãn  x  2 5  k 2 , k    B x   k 2 , k   D x  Câu 3: Số nghiệm phương trình A B Câu 4: Cho phương trình sin   sin x  đoạn  0;3   cos x C D x  m  , m tham số Với giá trị m phương trình vơ nghiệm? A 3  m  B m  C m   D Không tồn giá trị m ĐÁP ÁN 1-B 2-B 3-D 4-C HƯỚNG DẪN GIẢI CHI TIẾT Câu Phương trình sin  x     TOANMATH.com m2 có nghĩa x    D   , m  m 1 Trang   m  1  1  m  Ta có 1  sin  x       m  1    m  m  2m  m2 Giải 1 Ta có 1   0  m  1 m 1 m 1  Giải   Ta có m2 1   m 1   m  m 1 m 1 Kết hợp nghiệm ta có m   Câu Phương trình sin x  có nghĩa x    D       x   k 2 x   k 2     6 Do sin  nên sin x   sin x  sin    k   6  x      k 2  x  5  k 2   6 Vì   x  nên x   Câu Phương trình Ta có sin x  có nghĩa   cos x   cos x   x  k 2  D   \ k 2   cos x sin x k   sin x   x  k    cos x  x   2k  1  Kết hợp với điều kiện ta có  k    x    k  Do x   0;3   x   , x  , x  3 5 , x , x  3 2 Vậy phương trình có nghiệm Câu Phương trình sin Ta có 1  sin x  m  có nghĩa x    D   x   1  m    10  m  8 (vơ lí) Vậy phương trình vơ nghiệm với m   Dạng 2: Phương trình cos x = b TOANMATH.com Trang   Ví dụ mẫu   Ví dụ Giải phương trình cos  x    6  1 Hướng dẫn giải 1  cos  x     6       cos  x    cos  x     k 2  k    6         x    k 2  x  12  k 2 x      x       k 2  x  5  k 2 x    12   x  Vậy phương trình cho có nghiệm  x     k 24 k   5  k 24   k 24 k   5  k 24   Ví dụ Giải phương trình cos  x    sin x  3   2 Hướng dẫn giải    cos  x          sin x  cos  x    cos   x  3 3  2     k 2    x    x  k 2  x  42     x       x  k 2  x  5  2k   18 k    k 2   x  42  Vậy nghiệm phương trình  k    x  5  2k  18 Ví dụ Cho phương trình cos  x     m2 , m tham số Tìm m để phương trình cho có nghiệm m 1 Hướng dẫn giải Phương trình cos  x     m2 có nghĩa x    D   , m  m 1 m  1  1  m  Ta có 1  cos  x       m     2  m  TOANMATH.com Trang   m  2m  m2 Giải 1 Ta có 1   0  m  1 m 1 m 1  m2 1   m 1   m  m 1 m 1 Giải   Ta có Kết hợp nghiệm ta có m   Vậy với m   phương trình cho có nghiệm Bài tập tự luyện dạng Câu 1: Phương trình cos x   có nghiệm    x   k 2 ,k  A   x  3  k 2  3   x   k 2 B  ,k   x  3  k 2  5   x   k 2 C  ,k   x  5  k 2     x   k 2 D  ,k   x    k 2  x Câu 2: Phương trình cos   có nghiệm A x   5  k 2 , k   B x   5  k 2 , k   C x   5  k 4 , k   D x   5  k 4 , k   Câu 3: Phương trình cos x  cos A x   C x    15  45 C x    15 có nghiệm  k 2 , k    k B x   k 2 ,k  Câu 4: Phương trình cos x  A x    D x  45  45   k 2 ,k  k 2 ,k  có nghiệm ,k  B x    k 2 , k   D x       k , k    k 2 , k   Câu 5: Phương trình cos x  cos x có tập nghiệm với phương trình TOANMATH.com Trang   A sin 3x  B sin x  D sin x    cos  x    với  x  2 3  Câu 6: Số nghiệm phương trình A C sin x  B C D  5  cos  x   có họ nghiệm? Câu 7: Phương trình sin    A họ nghiệm B họ nghiệm C họ nghiệm D họ nghiệm ĐÁP ÁN 1-B 2-D 3-B 4-A 5-A 6-C 7-C HƯỚNG DẪN GIẢI CHI TIẾT Câu Phương trình cos x   có nghĩa x    D   Ta có cos x    cos x   3   k 2 x   3 3  Do cos nên cos x   cos x  cos   k   4  x  3  k 2  Câu x Phương trình cos   có nghĩa x    D   x x  Ta có cos    cos  2 Do cos 5  x  x 5 5  nên cos   cos  cos  x  k 4  k    2 2 Câu Phương trình cos x  cos12 có nghĩa x    D   Do cos12  cos  15 nên cos 3x  cos12  cos x  cos    3 x  15  k 2 x    3 x    k 2 x   15    15 k 2 45 k    k 2  45  Câu Phương trình cos x  TOANMATH.com có nghĩa x    D   Trang    cos x  Ta có cos x     cos x      cos x  cos  x    k 2  k    4 Xét cos x  Xét cos x  2  2  3 3  cos x  cos x  k 2  k    4 Kết hợp nghiệm ta x    k k   Câu Phương trình cos x  cos x có nghĩa x    D    x  x  k 2  x  k 2 k 2 Ta có cos x  cos x   x k    k  x   x  k 2  x  3  sin 3x 3x k 0  k  x  k   ; 2 sin x   x   sin x   x  sin x   x   k 2  k    ;    k 2  x   k 2  x  Vậy phương trình sin    k k   ;  k  k    3x  có tập nghiệm với phương trình cos x  cos x Câu Phương trình Ta có   cos  x    có nghĩa x    D   3    x    k 2      12 cos  x     cos  x     x     k 2   3      x   7  k 2  12  Do  x  2 nên x   23 17 ; x 12 12 Vậy phương trình có nghiệm thỏa mãn  x  2 Câu  5  cos  x   có nghĩa x    D   Phương trình sin    TOANMATH.com Trang 10     5  cos  x   k 2   5   5  cos  x    sin  cos  x   sin   Vì sin  nên sin  6      5 cos  x  5  k 2    cos  x   10    cos  x  10  k (vì 1  cos  x  )    cos  x    cos  x   k    cos  x  7  10 Ta có cos  x  1   x   arc cos  k 2 10 10 cos  x     cos   x    k 2 3 cos  x  7 7   x   arc cos  k 2 10 10 k   ; k    x    2k  k    ; k    x    arc cos 7  2k  k    10 Vậy phương trình có họ nghiệm Dạng 3: Phương trình tan x = m Ví dụ mẫu   Ví dụ Giải phương trình tan  x    4  1 Hướng dẫn giải     k  Điều kiện cos  x     x    k  x   , k   4 20  1  tan  x     5x         tan  x    tan  4 4   k  x    12  k  x   Vậy phương trình cho có nghiệm x    60  60 k k   Ví dụ Giải phương trình tan  x    cot x 4    , k   , k    2 Hướng dẫn giải    3 k      cos  x     x    k x    Điều kiện   4 sin x   x  l  x  l     tan  x   k;l       k   , k     tan   x   x    x  k  x   4 4 2  TOANMATH.com Trang 11   Vậy phương trình cho có nghiệm x   k , ( k  )  Bài tập tự luyện dạng Câu 1: Nghiệm phương trình tan  x  15   với 90  x  270 A x  210 B x  135 C x    D x  120 tan x   có nghiệm Câu 2: Phương trình A x  C x  60  k , k   B x    k , k   D x      k 2 , k    k , k   Câu 3: Phương trình tan x  có nghiệm A x     k , k   B x   D x  C Vô nghiệm Câu 4: Nghiệm phương trình tan x   tan A 4 B   3  k , k    k , k    2   khoảng  ;   2  C 3 D 2   Câu 5: Phương trình tan  sin x   có họ nghiệm? 4  A họ nghiệm B họ nghiệm Câu 6: Phương trình lượng giác A x  k  C Vô nghiệm D họ nghiệm   tan   x    có nghiệm 4  B x  ,k  C x  k , k    D x   k   ,k   k , k   ĐÁP ÁN 1-A 2-D 3-B 4-A 5-C 6-A HƯỚNG DẪN GIẢI CHI TIẾT Câu Ta có tan 45   tan  x  15   tan 45  x  15  45  k 180  x  30  k 180  k    Với 90  x  270  90  30  k 180  270  k   x  210 Câu Phương trình 3.tan x   có nghĩa  cos x   x  TOANMATH.com     k  D   \   k  2  Trang 12   tan x    tan x    tan x  tan Ta có    x    k  k    3 Câu Phương trình tan x  có nghĩa  cos x   x      k   D   \   k  2    tan x  Ta có tan x     tan x   Xét tan x   tan x  tan  Xét tan x    tan x  tan Vậy x    x   k  k      x  k  k    3  k  k    Câu Phương trình tan x   tan Ta có tan x   tan   có nghĩa  cos x   x   tan x  tan     k  D   \   k  2    x  k  k    5 4   Do x   ;   nên x  2  Câu Ta có       sin x   cos  sin x   , x   4 4  Phương trình xác định với x    D      tan  sin x    sin x  arc tan  k  sin x  arc tan  4k 2  4  Với k  arc tan  4k   sin x  (vơ lí)  Với k  1 4 arc tan  4k  1  sin x  1 (vơ lí)  Vậy cho phương trình vơ nghiệm Câu Phương trình   tan   x    có nghĩa 4     k     k   cos   x     x   k  x    D \   k   2  4   Ta có        tan   x     tan   x     x   k  x  k  k    4 4  4  TOANMATH.com Trang 13   Dạng 4: Phương trình cot x = n Ví dụ mẫu   1 Ví dụ Giải phương trình cot  x    6  Hướng dẫn giải    k  , k   Điều kiện sin  x     x   k  x   6 12  1  cot  x     2x        cot  x    k 6  k  x   k  , k   Vậy phương trình cho có nghiệm x   k  , k    4     x   cot   x     Ví dụ Giải phương trình tan     18  Hướng dẫn giải Điều kiện   4     4   x   k x   k cos   x           18    x   k ,  k ; m     18 sin    x      x  k  x    k     18 18 18    4      4     x     x    tan   x   cot   x  Ta có     18     18        x   cot   x    3cot   x    18   18   18     cot     5    cot   x     x   k  x    k ,  k    18 18  18  Vậy phương trình cho có nghiệm x   5  k ,  k    18 Bài tập tự luyện dạng Câu 1: Phương trình 3cot x   có nghiệm A x  C x      k , k   B x   k 2 , k   D Vô nghiệm 3  Câu 2: Cho phương trình cot  x   vô nghiệm? A m  2 TOANMATH.com  k , k      m  , m tham số Với giá trị m phương trình  B 2  m  Trang 14   C m   D Không tồn giá trị m Câu 3: Phương trình cot x.cot x   có nghiệm A x  C x     k , k      x   k ,k  B   x  5  k   k , k   D x   k  ,k  ĐÁP ÁN 1-B 2-D 3-B HƯỚNG DẪN GIẢI CHI TIẾT Câu Phương trình 3cot x   có nghĩa sin x   x  k  D   \ k   k    Ta có 3cot x    cot x     cot x  cot  x   k  k    3 Câu 3  Tập giá trị y  cot  x       nên với m   phương trình ln có nghiệm  Vậy khơng tồn giá trị m để phương trình vô nghiệm Câu sin x   x  k k Phương trình cot x.cot x   có nghĩa    x sin x   x  k k   Tập xác định D   \  x     Ta có cot x.cot x   cos x cos x cos x  2sin x  2sin x 1  1  1  2 sin x sin x sin x 2sin x cos x 2sin x 2sin x    sin x  sin sin x    1  cot x.cot x       sin x     2sin x sin x  sin  sin x  1     x   k 2   Nếu sin x  sin    x  5  k 2     k 2 x   Nếu sin x  sin   x  7  k 2  TOANMATH.com Trang 15      x   k Kết hợp nghiệm ta có  k    x  5  k  TOANMATH.com Trang 16 ... có cos    cos  2 Do cos 5  x  x 5 5  nên cos   cos  cos  x  k 4  k    2 2 Câu Phương trình cos x  cos12 có nghĩa x    D   Do cos12  cos  15 nên cos 3x  cos12... trình cot x = a Điều kiện sin x   cot x  cot   x    k  k     cot x  cot    x     k 180  k     cot x  a  x  arc cot a  k  k    Tổng quát: cot f  x   cot...   5 cos  x  5  k 2    cos  x   10    cos  x  10  k (vì 1  cos  x  )    cos  x    cos  x   k    cos  x  7  10 Ta có cos  x  1   x   arc cos 

Ngày đăng: 04/12/2022, 15:45

w