1. Trang chủ
  2. » Tất cả

Công thức số hạng tổng quát của cấp số nhân chi tiết nhất toán lớp 11

2 15 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 153,21 KB

Nội dung

Công thức số hạng tổng quát của cấp số nhân 1 Lý thuyết Dãy số (un) là một cấp số nhân khi n 1 n u q u   không phụ thuộc vào n và q là công bội Công thức số hạng tổng quát un = u1 q n 1 với n ,n 2 [.]

Công thức số hạng tổng quát cấp số nhân Lý thuyết - Dãy số (un) cấp số nhân u n 1  q không phụ thuộc vào n q công bội un - Công thức số hạng tổng quát: un = u1 qn - với n  ,n  2 Công thức - Công thức số hạng tổng quát: un = u1.qn - với n  ,n  Do để tìm số hạng tổng qt, ta cần tìm số hạng cơng bội cấp số nhân Ví dụ minh họa Ví dụ 1: Cho cấp số nhân (un) với u1 = u2 = – a) Xác định công thức số hạng tổng quát cấp số nhân b) Tính số hạng thứ 300 cấp số nhân c) Số 118098 số hạng thứ cấp số nhân Lời giải a) Ta có: q  u 6   3 u1 Số hạng tổng quát cấp số nhân: un = u1.qn – = 2.(–3)n-1 b) Số hạng thứ 300 cấp số nhân: u300 = 2.( –3)300-1 = – 2.3299 c) Gọi số hạng thứ k số 118098, ta có uk = u1.qk-1 = 118098  2. 3 k 1  118098   3 k 1  59049   3  k  11 10 Vậy số 118098 số hạng thứ 11 cấp số nhân Ví dụ 2: Cho cấp số nhân (un) với u  ;u  16 a) Tìm u1 công bội d b) Xác định công thức tổng quát cấp số nhân c) Tính số hạng thứ 250 cấp số nhân Lời giải a) Ta có: 1  q3  64  43  q  u q  u          1 u1  u q      16  u  16 u1q  16  Vậy u1  ;q  16 b) Số hạng tổng quát: u n  u1q n 1  n 1  4n 3 16 c) Số hạng thứ 250 cấp số nhân: u250 = 4250 - = 4247 ...Vậy u1  ;q  16 b) Số hạng tổng quát: u n  u1q n 1  n 1  4n 3 16 c) Số hạng thứ 250 cấp số nhân: u250 = 4250 - = 4247

Ngày đăng: 19/11/2022, 15:47

w